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Preface

lot has happened since the first edition of this book was released in

2007. First, my publisher and I found out that a book with the title How
to Measure Anything apparently sparks interest. For three years, the book
has consistently been the single best seller in Amazon’s math for business
category. Interest shows no sign of slowing and, in fact, registrations on the
book’s supplementary Web site (www.howtomeasureanything.com) show
that the interest is growing across many industries and countries. It was
successful enough that I could pitch my second book idea to my editor.

The 2008 financial crisis occurred just as I was finishing my second
book, The Failure of Risk Management: Why It's Broken and How to Fix It. 1
started writing that book because I felt that the topic of risk, which I could
spend only one chapter on in this book, merited much more space. I argued
that a lot of the most popular methods used in risk assessments and risk
management don’t stand up to the bright light of scientific scrutiny. And I
wasn'’t just talking about the financial industry. I started writing the book
well before the financial crisis started. I wanted to make it just as relevant
to another Katrina or 9/11 as to a financial crisis.

I've also written several more articles, and the combined research from
them, my second book, and comments from readers on the book’s Web
site gave me plenty of new material to add to this second edition. But
the basic message is still the same. I wrote this book to correct a costly
myth that permeates many organizations today: that certain things can’t be
measured. This widely held belief is a significant drain on the economy,
public welfare, the environment, and even national security. “Intangibles”
such as the value of quality, employee morale, or even the economic impact
of cleaner water are frequently part of some critical business or government
policy decision. Often an important decision requires better knowledge of
the alleged intangible, but when an executive believes something to be
immeasurable, attempts to measure it will not even be considered.

As a result, decisions are less informed than they could be. The chance
of error increases. Resources are misallocated, good ideas are rejected, and
bad ideas are accepted. Money is wasted. In some cases life and health are
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put in jeopardy. The belief that some things—even very important things—
might be impossible to measure is sand in the gears of the entire economy.

All important decision makers could benefit from learning that any-
thing they really need to know is measurable. However, in a democ-
racy and a free enterprise economy, voters and consumers count among
these “important decision makers.” Chances are your decisions in some
part of your life or your professional responsibilities would be improved
by better measurement. And it’s virtually certain that your life has already
been affected—negatively—by the lack of measurement in someone else’s
decisions.

I've made a career out of measuring the sorts of things many thought
were immeasurable. I first started to notice the need for better measure-
ment in 1988, shortly after I started working for Coopers & Lybrand as a
brand-new MBA in the management consulting practice. I was surprised
at how often clients dismissed a critical quantity—something that would
affect a major new investment or policy decision—as completely beyond
measurement. Statistics and quantitative methods courses were still fresh in
my mind. In some cases, when someone called something “immeasurable,”
I would remember a specific example where it was actually measured. I
began to suspect any claim of immeasurability as possibly premature, and
I would do research to confirm or refute the claim. Time after time, T kept
finding that the allegedly immeasurable thing was already measured by an
academic or perhaps professionals in another industry.

At the same time, I was noticing that books about quantitative meth-
ods didn’t focus on making the case that everything is measurable. They
also did not focus on making the material accessible to the people who
really needed it. They start with the assumption that the reader already be-
lieves something to be measurable, and it is just a matter of executing the
appropriate algorithm. And these books tended to assume that the reader’s
objective was a level of rigor that would suffice for publication in a scientific
journal—not merely a decrease in uncertainty about some critical decision
with a method a nonstatistician could understand.

In 1995, after years of these observations, I decided that a market ex-
isted for better measurements for managers. I pulled together methods from
several fields to create a solution. The wide variety of measurement-related
projects I had since 1995 allowed me to fine-tune this method. Not only was
every alleged immeasurable turning out not to be so, the most intractable
“intangibles” were often being measured by surprisingly simple methods. Tt
was time to challenge the persistent belief that important quantities were
beyond measurement.

In the course of writing this book, I felt as if I were exposing a big
secret and that once the secret was out, perhaps a lot of things would be
different. I even imagined it would be a small “scientific revolution” of sorts
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for managers—a distant cousin of the methods of “scientific management”
introduced a century ago by Frederick Taylor. This material should be even
more relevant than Taylor’s methods turned out to be for twenty-first-century
managers. Whereas scientific management originally focused on optimizing
labor processes, we now need to optimize measurements for management
decisions. Formal methods for measuring those things management usually
ignores have barely reached the level of alchemy. We need to move from
alchemy to the equivalent of chemistry and physics.

The publisher and T considered several titles. All the titles considered
started with “How to Measure Anything” but weren’t always followed by
“Finding the Value of Intangibles in Business.” I give a seminar called “How
to Measure Anything, But Only What You Need To.” Since the methods in
this book include computing the economic value of measurement (so that
we know where to spend our measurement efforts), it seemed particularly
appropriate. We also considered “How to Measure Anything: Valuing Intan-
gibles in Business, Government, and Technology” since there are so many
technology and government examples in this book alongside the general
business examples. But the title chosen, How to Measure Anything: Finding
the Value of “Intangibles” in Business, seemed to grab the right audience
and convey the point of the book without necessarily excluding much of
what the book is about.

The book is organized into four sections. The chapters and sections
should be read in order because the first three sections rely on instructions
from the earlier sections. Section One makes the case that everything is
measurable and offers some examples that should inspire readers to at-
tempt measurements even when it seems impossible. It contains the basic
philosophy of the entire book, so, if you don’t read anything else, read this
section. In particular, the specific definition of measurement discussed in
this section is critical to correctly understand the rest of the book.

Section Two begins to get into more specific substance about how to
measure things—specifically uncertainty, risk, and the value of information.
These are not only measurements in their own right but, in the approach
I'm proposing, prerequisites to all measurements. Readers will learn how
to measure their own subjective uncertainty with “calibrated probability
assessments” and how to use that information to compute risk and the
value of additional measurements. It is critical to understand these concepts
before moving on to the next section.

Section Three deals with how to reduce uncertainty by various methods
of observation, including random sampling and controlled experiments. It
provides some shortcuts for quick approximations when possible. It also
discusses methods to improve measurements by treating each observation
as updating and marginally reducing a previous state of uncertainty. It re-
views some material that readers may have seen in first-semester statistics



Xiv Preface

courses, but it is written specifically to build on the methods discussed in
Section Two. Some of the more elaborate discussions on regression model-
ing and controlled experiments could be skimmed over or studied in detail,
depending on the needs of the reader.

Section Four is an eclectic collection of interesting measurement solu-
tions and case examples. It discusses methods for measuring such things as
preferences, values, flexibility, and quality. It covers some new or obscure
measurement instruments, including calibrated human judges or even the
Internet. It summarizes and pulls together the approaches covered in the
rest of the book with detailed discussions of two case studies and other
examples.

In Chapter 1, I suggest a challenge for readers, and I will reinforce that
challenge by mentioning it here. Write down one or more measurement
challenges you have in home life or work, then read this book with the
specific objective of finding a way to measure them. If those measurements
influence a decision of any significance, then the cost of the book and the
time to study it will be paid back manyfold.
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SECTION I

Measurement: The
Solution Exists






CHAPTER 1

Intangibles and the Challenge

When you can measure what you are speaking about, and express it in

numbers, you know something about it; but when you cannot express

it in numbers, your knowledge is of a meager and unsatisfactory kind;

it may be the beginning of knowledge, but you have scarcely in your
thoughts advanced to the state of science.

—Lord Kelvin, British physicist and member of

the House of Lords, 1824-1907

Anything can be measured. If a thing can be observed in any way at all,
it lends itself to some type of measurement method. No matter how
“fuzzy” the measurement is, it'’s still a measurement if it tells you more
than you knew before. And those very things most likely to be seen as
immeasurable are, virtually always, solved by relatively simple measurement
methods.

As the title of this book indicates, we will discuss how to find the
value of those things often called “intangibles” in business. There are two
common understandings of the word “intangible.” It is routinely applied to
things that are literally not tangible (i.e., not touchable, solid objects) yet
are widely considered to be measurable. Things like time, budget, patent
ownership, and so on are good examples of things that you cannot touch
but yet are measured. In fact, there is a well-established industry around
measuring so-called intangibles such as copyright and trademark valuation.
But the word “intangible” has also come to mean utterly immeasurable in
any way at all, directly or indirectly. It is in this context that I argue that
intangibles do not exist.

You've heard of “intangibles” in your own organization—things that
presumably defy measurement of any type. The presumption of immea-
surability is, in fact, so strong that no attempt is even made to make any
observations that might tell you something—anything—about the alleged
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immeasurable that you might be surprised to learn. You may have run into
one or more of these real-life examples of so-called intangibles:

Management effectiveness

The forecasted revenues of a new product

The public health impact of a new government environmental policy
The productivity of research

The “flexibility” to create new products

The value of information

The risk of bankruptcy

The chance of a given political party winning the White House
The risk of failure of an information technology (IT) project
Quality

Public image

Each of these examples can very well be relevant to some major decision
an organization must make. It could even be the single most important
impact of an expensive new initiative in either business or government
policy. Yet in most organizations, because the specific “intangible” was
assumed to be immeasurable, the decision was not nearly as informed as it
could have been.

One place I've seen this many times is in the “steering committees”
that review proposed investments and decide which to accept or reject. The
proposed investments may be related to IT, new product research and devel-
opment, major real estate development, or advertising campaigns. In some
cases, the committees were categorically rejecting any investment where the
benefits were primarily “soft” ones. Important factors with names like “im-
proved word-of-mouth advertising,” “reduced strategic risk,” or “premium
brand positioning” were being ignored in the evaluation process because
they were considered immeasurable. It’s not as if the idea was being rejected
simply because the person proposing it hadn’t measured the benefit (a valid
objection to a proposal); rather it was believed that the benefit couldn’t pos-
sibly be measured—ever. Consequently, some of the most important strate-
gic proposals were being overlooked in favor of minor cost-savings ideas
simply because everyone knew how to measure some things and didn’t
know how to measure others. Equally disturbing, many major investments
were approved with no basis for measuring whether they ever worked at all.

The fact of the matter is that some organizations have succeeded in
analyzing and measuring all of the previously listed items, using methods
that are probably less complicated than you would think. The purpose of
this book is to show organizations two things:

1. Intangibles that appear to be completely intractable can be measured.
2. This measurement can be done in a way that is economically justified.
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To accomplish these goals, this book will address some common mis-
conceptions about intangibles, describe a “universal approach” to show how
to go about measuring an “intangible,” and provide some interesting meth-
ods for particular problems. Throughout, I have attempted to include some
examples (some of which I hope the reader finds inspirational) of how
people have tackled some of the most difficult measurements there are.

Without compromising substance, this book also attempts to make some
of the more seemingly esoteric statistics around measurement as simple as
they can be. Whenever possible, math is converted into simpler charts,
tables, and procedures. Some of the methods are so much simpler than
what is taught in the typical introductory statistics courses that we might be
able to overcome many phobias about the use of quantitative measurement
methods. Readers do not need any advanced training in any mathematical
methods at all. They just need some aptitude for clearly defining problems.

Readers are encouraged to use this book’s Web site at www.
howtomeasureanything.com. The site offers a library of downloadable
spreadsheets for many of the more detailed calculations shown in this book.
There also are additional learning aids, examples, and a discussion board
for questions about the book or measurement challenges in general. The
site also provides a way for me to discuss new technologies or techniques
that were not available when this book was printed.

Yes, I Mean Anything

I have one recommendation for a useful exercise to try. When reading
through the chapters, write down those things you believe are immeasurable
or, at least, you are not sure how to measure. After reading this book, my
goal is that you are able to identify methods for measuring each and every
one of them. And don’t hold back. We will be talking about measuring such
seemingly immeasurable things as the number of fish in the ocean, the value
of a happy marriage, and even the value of a human life. Whether you want
to measure phenomena related to business, government, education, art, or
anything else, the methods herein apply.

With a title like How to Measure Anything, anything less than a multi-
volume text would be sure to leave out something. My objective does not
include every area of physical science or economics, especially where mea-
surements are well developed. Those disciplines have measurement meth-
ods for a variety of interesting problems, and the professionals in those disci-
plines are already much less inclined even to apply the label “intangible” to
something they are curious about. The focus here is on measurements that
are relevant—even critical—to major organizational decisions and yet don’t
seem to lend themselves to an obvious and practical measurement solution.
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If T do not mention your specific measurement problem by name, don’t
conclude that methods relevant to that issue aren’t being covered. The ap-
proach I will talk about applies to any uncertainty that has some relevance
to your firm, your community, even your personal life. This extrapolation
should not be difficult. When you studied arithmetic in elementary school,
you may not have covered the solution to 347 times 79 in particular but you
knew that the same procedures applied to any combination of numbers and
operations. So, if your problem happens to be something that isn’t specifi-
cally analyzed in this book—such as measuring the value of better product
labeling laws, the quality of a movie script, or effectiveness of motivational
seminars—don’t be dismayed. Just read the entire book and apply the steps
described. Your immeasurable will turn out to be entirely measurable.

The Proposal

Let me begin by stating the three propositions as a way to define and
approach the problem of measurement in business:

1. Management cares about measurements because measurements inform
uncertain decisions.

2. For any decision or set of decisions, there are a large combination of
things to measure and ways to measure them—but perfect certainty is
rarely a realistic option.

3. Therefore, management needs a method to analyze options for reducing
uncertainty about decisions.

Perhaps you think the first two points are too obvious to make. But
while it may seem obvious, few management consultants, performance
metrics experts, or even statisticians approach the problem with the explicit
purpose of supporting defined decisions. Even if they had that squarely in
mind, the last point, at a minimum, is where a lot of business measurement
methods fall short.

It is very useful to see measurement as a type of optimization problem
for reducing uncertainty. Upon reading the first edition of this book, a busi-
ness school professor remarked that he thought I had written a book about
the somewhat esoteric field called “decision analysis” and disguised it under
a title about measurement so that people from business and government
would read it. That wasn’t my intention when I set out, but I think he hit
the nail on the head. Measurement is about supporting decisions, and there
are even several decisions to make within measurements themselves.

If the decision in question is highly uncertain and has significant con-
sequences if it turns out wrong, then measurements that reduce uncertainty
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about it have a high value. Nobody should care about measuring something
if it doesn’t inform a significant bet of some kind. Likewise, if measurements
were free, obvious, and instantaneous, we would have no dilemma about
what, how, or even whether to measure.

Granted, a measurement might also be taken because it has its own
market value (e.g., results of a consumer survey) or because it is simply
satisfying a curiosity or will be entertaining (e.g., academic research about
the evolution of clay pottery). But the methods we discuss in the decision-
focused approach to measurement should be useful on those occasions, too.
If a measurement is not informing your decisions, it could still be informing
the decisions of others who are willing to pay for the information. And
if you are an academic curious about what really happened to the wooly
mammoth, then, again, I believe this book will have some bearing on how
you set up the problem.

From here on out, this book addresses three broad issues: why nothing
is really immeasurable, how to set up and define any measurement problem,
and how to use powerful and practical measurement methods to resolve the
problem. The next two chapters of this book build the argument for the first
point: that you can really measure anything. Chapters 4 through 7 set up
the measurement problem by answering questions from the point of view
of supporting specific decisions. We have to answer the question “What is
the real problem/decision/dilemma?” underlying the desired measurement.
We also have to answer the question “What about that problem really needs
to be measured and by how much (to what degree of accuracy/precision)?”
These questions frame the problem in terms of the primary decision the
measurement is meant to resolve and the “microdecisions” that need to be
made within the measurement process itself.

The remainder of the book combines this approach with powerful and
practical empirical methods to reduce uncertainty—some basic, some more
advanced. The final chapter pulls it all together into a solution and describes
how that solution has been applied to real-world problems. Since this ap-
proach can apply to anything, the details might sometimes get complicated.
But it is much less complicated than many other initiatives organizations
routinely commit to doing. I know, because I've helped many organizations
apply these methods to the really complicated problems: venture capital, I'T
portfolios, measuring training, improving homeland security, and more.

In fact, measurements that are useful are often much simpler than peo-
ple first suspect. I make this point in Chapter 2 by showing how three clever
individuals measured things that were previously thought to be difficult or
impossible to measure.






CHAPTER 2

An Intuitive Measurement Habit:
Eratosthenes, Enrico, and Emily

S etting out to become a master of measuring anything seems pretty ambi-
tious, and a journey like that needs some inspirational examples to keep
us motivated. What we need are some measurement “heroes”—individuals
who saw measurement solutions intuitively and often solved difficult
problems with surprisingly simple methods. Fortunately, we have many
people—at the same time inspired and inspirational—to show us what such
a skill would look like. It’s revealing, however, to find out that so many
of the best examples seem to be from outside of business. In fact, this
book will borrow heavily from outside of business to reveal measurement
methods that can be applied to business.

Here are just a few people who, while they weren’t working on mea-
surement within business, can teach business people quite a lot about what
an intuitive feel for quantitative investigation should look like.

In ancient Greece, a man estimated the circumference of Earth by look-
ing at the different lengths of shadows in different cities at noon and
by applying some simple geometry.

A Nobel Prize—winning physicist taught his students how to estimate by
estimating the number of piano tuners in Chicago.

A nine-year-old girl set up an experiment that debunked the growing
medical practice of “therapeutic touch” and, two years later, became the
youngest person ever to be published in the journal of the American
Medical Association (JAMA).

You may have heard of these individuals, or maybe just one or two
of them. Even if you vaguely remember something about them, it is worth
reviewing each in the context of the others. None of these people ever met
each other personally (none lived at the same time), but each showed an
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ability to size up a measurement problem and identify quick and simple
observations that have revealing results. They were able to estimate un-
knowns quickly by using simple observations. It is important to contrast
their approach with what you might typically see in a business setting. The
characters in these examples are or were real people named Eratosthenes,
Enrico, and Emily.

How an Ancient Greek Measured the Size of Earth

Our first mentor of measurement did something that was probably thought
by many in his day to be impossible. An ancient Greek named Eratosthenes
(ca. 276-194 B.c.) made the first recorded measurement of the circumference
of Earth. If he sounds familiar, it might be because he is mentioned in many
high school trigonometry and geometry textbooks.

Eratosthenes didn’t use accurate survey equipment, and he certainly
didn’t have lasers and satellites. He didn’t even embark on a risky and
probably lifelong attempt at circumnavigating Earth. Instead, while in the
Library of Alexandria, he read that a certain deep well in Syene, a city in
southern Egypt, would have its bottom entirely lit by the noon sun one day a
year. This meant the sun must be directly overhead at that point in time. But
he also observed that at the same time, vertical objects in Alexandria (almost
straight north of Syene) cast a shadow. This meant Alexandria received sun-
light at a slightly different angle at the same time. Eratosthenes recognized
that he could use this information to assess the curvature of Earth.

He observed that the shadows in Alexandria at noon at that time of year
made an angle that was equal to an arc of one-fiftieth of a circle. Therefore,
if the distance between Syene and Alexandria was one-fiftieth of an arc, the
circumference of Earth must be 50 times that distance. Modern attempts to
replicate Eratosthenes’s calculations vary by exactly how much the angles
were, conversions from ancient units of measure, and the exact distances
between the ancient cities, but typical results put his answer within 3%
of the actual value.! Eratosthenes’s calculation was a huge improvement
over previous knowledge, and his error was less than the error modern
scientists had just a few decades ago for the size and age of the universe.
Even 1,700 years later, Columbus was apparently unaware of or ignored
Eratosthenes’s result; his estimate was fully 25% short. (This is one of the
reasons Columbus thought he might be in India, not another large, interven-
ing landmass where I reside.) In fact, a more accurate measurement than
Eratosthenes’s would not be available for another 300 years after Columbus.
By then, two Frenchmen, armed with the finest survey equipment available
in late-eighteenth-century France, numerous staff, and a significant grant,
finally were able to do better than Eratosthenes.?
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Here is the lesson for business: Eratosthenes made what might seem
an impossible measurement by making a clever calculation on some simple
observations. When I ask participants in my measurement and risk analysis
seminars how they would make this estimate without modern tools, they
usually identify one of the “hard ways” to do it (e.g., circumnavigation).
But Eratosthenes, in fact, may not have even left the vicinity of the library to
make this calculation. One set of observations that would have answered
this question would have been very difficult to make, but his measurement
was based on other, simpler observations. He wrung more information out
of the few facts he could confirm instead of assuming the hard way was
the only way.

Estimating: Be Like Fermi

Another person from outside business who might inspire measurements
within business is Enrico Fermi (1901-1954), a physicist who won the Nobel
Prize in physics in 1938. He had a well-developed knack for intuitive, even
casual-sounding measurements.

One renowned example of his measurement skills was demonstrated at
the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945,
where he was one of the atomic scientists observing the blast from base
camp. While other scientists were making final adjustments to instruments
used to measure the yield of the blast, Fermi was making confetti out of
a page of notebook paper. As the wind from the initial blast wave began
to blow through the camp, he slowly dribbled the confetti into the air,
observing how far back it was scattered by the blast (taking the farthest
scattered pieces as being the peak of the pressure wave). Fermi concluded
that the yield must be greater than 10 kilotons. This would have been
news, since other initial observers of the blast did not know that lower
limit. Could the observed blast be less than 5 kilotons? Less than 2? These
answers were not obvious at first. (As it was the first atomic blast on the
planet, nobody had much of an eye for these things.) After much analysis of
the instrument readings, the final yield estimate was determined to be 18.6
kilotons. Like Eratosthenes, Fermi was aware of a rule relating one simple
observation—the scattering of confetti in the wind—to a quantity he wanted
to measure.

The value of quick estimates was something Fermi was familiar with
throughout his career. He was famous for teaching his students skills to
approximate fanciful-sounding quantities that, at first glance, they might
presume they knew nothing about. The best-known example of such
a “Fermi question” was Fermi asking his students to estimate the num-
ber of piano tuners in Chicago. His students—science and engineering
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majors—would begin by saying that they could not possibly know anything
about such a quantity. Of course, some solutions would be to simply do a
count of every piano tuner perhaps by looking up advertisements, checking
with a licensing agency of some sort, and so on. But Fermi was trying to
teach his students how to solve problems where the ability to confirm the
results would not be so easy. He wanted them to figure out that they knew
something about the quantity in question.

Fermi would start by asking them to estimate other things about pianos
and piano tuners that, while still uncertain, might seem easier to estimate.
These included the current population of Chicago (a little over 3 million
in the 1930s to 1950s), the average number of people per household (2 or
3), the share of households with regularly tuned pianos (not more than 1
in 10 but not less than 1 in 30), the required frequency of tuning (perhaps
1 a year, on average), how many pianos a tuner could tune in a day (4 or
5, including travel time), and how many days a year the turner works (say,
250 or so). The result would be computed:

Tuners in Chicago = Population/people per household
x percentage of households with tuned pianos
X tunings per year/
(tunings per tuner per day x workdays per year)

Depending on which specific values you chose, you would probably
get answers in the range of 20 to 200, with something around 50 being fairly
common. When this number was compared to the actual number (which
Fermi might get from the phone directory or a guild list), it was always closer
to the true value than the students would have guessed. This may seem like
a very wide range, but consider the improvement this was from the “How
could we possibly even guess?” attitude his students often started with.

This approach to solving a Fermi question is known as a Fermi decom-
position or Fermi solution. This method helped to estimate the uncertain
quantity but also gave the estimator a basis for seeing where uncertainty
about the quantity came from. Was the big uncertainty about the share of
households that had tuned pianos, how often a piano needed to be tuned,
how many pianos can a tuner tune in a day, or something else? The biggest
source of uncertainty would point toward a measurement that would reduce
the uncertainty the most.

Technically, a Fermi decomposition is not yet quite a measurement. It
is not based on new observations. (As we will see later, this is central to the
meaning of the word “measurement.”) Tt is really more of an assessment of
what you already know about a problem in such a way that it can get you
in the ballpark. The lesson for business is to avoid the quagmire that uncer-
tainty is impenetrable and beyond analysis. Instead of being overwhelmed
by the apparent uncertainty in such a problem, start to ask what things
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about it you do know. As we will see later, assessing what you currently
know about a quantity is a very important step for measurement of those
things that do not seem as if you can measure them at all.

A Fermi Decomposition for a New Business

Chuck McKay, with Wizard of Ads, encourages companies to use
Fermi questions to estimate the market size for a product in a given
area. An insurance agent once asked Chuck to evaluate an opportunity
to open a new office in Wichita Falls, Texas, for an insurance carrier
that currently had no local presence there. Is there room for another
carrier in this market? To test the feasibility of this business proposition,
McKay answered a few Fermi questions with some Internet searches.
Like Fermi, McKay started with the big population questions and
proceeded from there.

According to City-Data.com, there were 62,172 cars in Wichita
Falls. According to the Insurance Information Institute, the average
automobile insurance annual premium in the state of Texas was
$837.40. McKay assumed that almost all cars have insurance, since it
is mandatory, so the gross insurance revenue in town was $52,062,833
each year. The agent knew the average commission rate was 12%,
so the total commission pool was $6,247,540 per year. According to
Switchboard.com, there were 38 insurance agencies in town, a number
that is very close to what was reported in Yellowbook.com. When the
commission pool is divided by those 38 agencies, the average agency
commissions are $164,409 per year.

This market was probably getting tight since City-Data.com also
showed the population of Wichita Falls fell from 104,197 in 2000 to
99,846 in 2005. Furthermore, a few of the bigger firms probably wrote
the majority of the business, so the revenue would be even less than
that—and all this before taking out office overhead.

McKay’s conclusion: A new insurance agency with a new brand
in town didn’t have a good chance of being very profitable, and the
agent should pass on the opportunity.

(Note: These are all exact numbers. But soon we will discuss how
to do the same kind of analysis when all you have are inexact ranges.)

Experiments: Not Just for Adults

Another person who seemed to have a knack for measuring her world
was Emily Rosa. Although Emily published one of her measurements in
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the JAMA, she did not have a PhD or even a high school diploma. At the
time she conducted the measurement, Emily was a 9-year-old working on
an idea for her fourth-grade science fair project. She was just 11 years old
when her research was published, making her the youngest person ever to
have research published in the prestigious medical journal and perhaps the
youngest in any major, peer-reviewed scientific journal.

In 1996, Emily saw her mother, Linda, watching a videotape on a grow-
ing industry called “therapeutic touch,” a controversial method of treating
ailments by manipulating the patients’ “energy fields.” While the patient lay
still, a therapist would move his or her hands just inches away from the
patient’s body to detect and remove “undesirable energies,” which presum-
ably caused various illnesses. Emily suggested to her mother that she might
be able to conduct an experiment on such a claim. Linda, who was a nurse
and a long-standing member of the National Council Against Health Fraud
(NCAHF), gave Emily some advice on the method.

Emily initially recruited 21 therapists for her science fair experiment.
The test involved Emily and the therapist sitting on opposite sides of a
table. A cardboard screen separated them, blocking each from the view
of the other. The screen had holes cut out at the bottom through which
the therapist would place her hands, palms up, and out of sight. Emily
would flip a coin and, based on the result, place her hand four to five
inches over the therapist's left or right hand. (This distance was marked
on the screen so that Emily’s hand would be a consistent distance from
the therapist’s hand.) The therapists, unable to see Emily, would have to
determine whether she was holding her hand over their left or right hand
by feeling for her energy field. Emily reported her results at the science fair
and got a blue ribbon—just as everyone else did.

Linda mentioned Emily’s experiment to Dr. Stephen Barrett, whom she
knew from the NCAHF. Barrett, intrigued by both the simplicity of the
method and the initial findings, then mentioned it to the producers of the
TV show Scientific American Frontiers shown on the Public Broadcasting
System. In 1997, the producers shot an episode on Emily’s experimental
method. Emily managed to convince 7 of the original 21 therapists to take
the experiment again for the taping of the show. She now had a total of
28 separate tests, each with 10 opportunities for the therapist to guess the
correct hand.

This made a total of 280 individual attempts by 21 separate therapists
(14 had 10 attempts each while another 7 had 20 attempts each) to feel
Emily’s energy field. They correctly identified the position of Emily’s hand
just 44% of the time. Left to chance alone, they should get about 50%
right with a 95% confidence interval of +/— 6%. (If you flipped 280 coins,
there is a 95% chance that between 44% and 56% would be heads.) So
the therapists may have been a bit unlucky (since they ended up on the
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bottom end of the range), but their results are not out of bounds of what
could be explained by chance alone. In other words, people “uncertified”
in therapeutic touch—you or I—could have just guessed and done as well
as or better than the therapists.

With these results, Linda and Emily thought the work might be worthy
of publication. In April 1998, Emily, then 11 years old, had her experiment
published in the JAMA. That earned her a place in the Guinness Book of
World Records as the youngest person ever to have research published in a
major scientific journal and a $1,000 award from the James Randi Educational
Foundation.

James Randi, retired magician and renowned skeptic, set up this foun-
dation for investigating paranormal claims scientifically. (He advised Emily
on some issues of experimental protocol.) Randi created the $1 million
“Randi Prize” for anyone who can scientifically prove extrasensory percep-
tion (ESP), clairvoyance, dowsing, and the like. Randi dislikes labeling his
efforts as “debunking” paranormal claims since he just assesses the claim
with scientific objectivity. But since hundreds of applicants have been un-
able to claim the prize by passing simple scientific tests of their paranormal
claims, debunking has been the net effect. Even before Emily’s experiment
was published, Randi was also interested in therapeutic touch and was try-
ing to test it. But, unlike Emily, he managed to recruit only one therapist
who would agree to an objective test—and that person failed.

After these results were published, therapeutic touch proponents stated
a variety of objections to the experimental method, claiming it proved noth-
ing. Some stated that the distance of the energy field was really one to three
inches, not the four or five inches Emily used in her experiment.> Others
stated that the energy field was fluid, not static, and Emily’s unmoving hand
was an unfair test (despite the fact that patients usually lie still during their
“treatment”).* None of this surprises Randi. “People always have excuses
afterward,” he says. “But prior to the experiment every one of the therapists
were asked if they agreed with the conditions of the experiment. Not only
did they agree, but they felt confident they would do well.” Of course, the
best refutation of Emily’s results would simply be to set up a controlled,
valid experiment that conclusively proves therapeutic touch does work. No
such refutation has yet been offered.

Randi has run into retroactive excuses to explain failures to demonstrate
paranormal skills so often that he has added another small demonstration to
his tests. Prior to taking the test, Randi has subjects sign an affidavit stating
that they agreed to the conditions of the test, that they would later offer no
objections to the test, and that, in fact, they expected to do well under the
stated conditions. At that point Randi hands them a sealed envelope. After
the test, when they attempt to reject the outcome as poor experimental
design, he asks them to open the envelope. The letter in the envelope
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simply states “You have agreed that the conditions were optimum and that
you would offer no excuses after the test. You have now offered those
excuses.” Randi observes, “They find this extremely annoying.”

Emily’s example provides more than one lesson for business. First, even
touchy-feely-sounding things like “employee empowerment,” “creativity,” or
“strategic alignment” must have observable consequences if they matter at
all. 'm not saying that such things are “paranormal,” but the same rules
apply.

Second, Emily’s experiment demonstrated the effectiveness of simple
methods routinely used in scientific inquiry, such as a controlled experiment,
sampling (even a small sample), randomization, and using a type of “blind”
to avoid bias from the test subject or researcher. These simple elements can
be combined to allow us to observe and measure a variety of phenomena.

Also, Emily showed that useful levels of experimentation can be un-
derstood by even a child on a small budget. Linda Rosa said she spent
just $10 on the experiment. Emily could have constructed a much more
elaborate clinical trial of the effects of this method using test groups and
control groups to test how much therapeutic touch improves health. But she
didn’t have to do that because she simply asked a more basic question. If
the therapists can do what they claimed, then they must, Emily reasoned, at
least be able to feel the energy field. If they can’t do that (and it is a basic as-
sumption of the claimed benefits), then everything about therapeutic touch
is in doubt. She could have found a way to spend much more if she had,
say, the budget of one of the smaller clinical studies in medical research.
But she determined all she needed with more than adequate accuracy. By
comparison, how many of your performance metrics methods could get
published in a scientific journal?

Emily’s example shows us how simple methods can produce a useful
result. Her experiment was far less elaborate than most others published in
the journal, but the simplicity of the experiment was actually considered a
point in favor of the strength of its findings. According to George Lundberg,
the editor of the journal, JAMA'’s statisticians “were amazed by its simplicity
and by the clarity of its results.”

Perhaps you are thinking that Emily is a rare child prodigy. Even as
adults, most of us would be hard-pressed to imagine such a clever solution
to a measurement problem like this. According to Emily herself, nothing
could be further from the truth. At the writing of this second edition, Emily
Rosa was working on her last semester for a bachelor’s degree in psychology
at the University of Colorado—Denver. She volunteered that she had earned a
relatively modest 3.2 GPA and describes herself as average. Still, she does en-
counter those who expect anyone who has published research at the age of
11 to have unusual talents. “It’s been hard for me,” she says, “because some
people think I'm a rocket scientist and they are disappointed to find out that
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I'm so average.” Having talked to her, I suspect she is a little too modest, but
her example does prove what can be done by most managers if they tried.

I have at times heard that “more advanced” measurements like con-
trolled experiments should be avoided because upper management won’t
understand them. This seems to assume that all upper management really
does succumb to the Dilbert Principle (cartoonist Scott Adam’s tongue-
in-cheek rule that states that only the least competent get promoted).®
In my experience, upper management will understand it just fine, if you
explain it well.

Emily, explain it to them, please.

Example: Mitre Information Infrastructure

An interesting business example of how a business might measure an
“intangible” by first testing if it exists at all is the case of the Mitre
Information Infrastructure (MID). This system was developed in the late
1990s by Mitre Corporation, a not-for-profit that provides federal agen-
cies with consulting on system engineering and information technology.
MII was a corporate knowledge base that spanned insular departments
to improve collaboration.

In 2000, CIO magazine wrote a case study about MII. The maga-
zine’s method for this sort of thing is to have a staff writer do all the
heavy lifting for the case study itself and then to ask an outside expert
to write an accompanying opinion column called “Critical Analysis.”
The magazine often asked me to write the opinion column when the
case was anything about value, measurement, risk, and so on, and I
was asked to do so for the MII case.

The “Critical Analysis” column is meant to offer some balance in the
case study since companies talking about some new initiative are likely
to paint a pretty rosy picture. The article quotes Al Grasso, the chief
information officer (CIO) at the time: “Our most important gain can’t
be as easily measured—the quality and innovation in our solutions
that become realizable when you have all this information at your
fingertips.” However, in the opinion column, I suggested one fairly
easy measure of “quality and innovation”:

If MII really improves the quality of deliverables, then it should
affect customer perceptions and ultimately revenue.” Simply ask a
random sample of customers to rank the quality of some pre-MII
and post-MII deliverables (make sure they don’t know wbhich

(continued)
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(Continued)

is which) and if improved quality bas recently caused them to
purchase more services from Mitre.

Like Emily, I proposed that Mitre not ask quite the same question
the CIO might have started with but a simpler, related question. If
quality and innovation really did get better, shouldn’t someone at least
be able to tell that there is any difference? If the relevant judges (i.e.,
the customers) can't tell, in a blind test, that post-MII research is “higher
quality” or “more innovative” than pre-MII research, then MII shouldn’t
have any bearing on customer satisfaction or, for that matter, revenue.
If, however, they can tell the difference, then you can worry about the
next question: whether the revenue improved enough to be worth the
investment of over $7 million by 2000. Like everything else, if Mitre’s
quality and innovation benefits could not be detected, then they don’t
matter. I'm told by current and former Mitre employees that my column
created a lot of debate. However, they were not aware of any such
attempt actually to measure quality and innovation. Remember, the
CIO said this would be the most important gain of MII, and it went
unmeasured.

Notes on What to Learn from Eratosthenes, Enrico, and Emily

Taken together, Eratosthenes, Enrico, and Emily show us something very
different from what we are typically exposed to in business. Executives often
say, “We can’t even begin to guess at something like that.” They dwell ad
infinitum on the overwhelming uncertainties. Instead of making any attempt
at measurement, they prefer to be stunned into inactivity by the apparent
difficulty in dealing with these uncertainties. Fermi might say, “Yes, there
are a lot of things you don’t know, but what do you know?”

Other managers might object: “There is no way to measure that thing
without spending millions of dollars.” As a result, they opt not to engage in
a smaller study—even though the costs might be very reasonable—because
such a study would have more error than a larger one. Yet perhaps even
this uncertainty reduction might be worth millions, depending on the size
and frequency of the decision it is meant to support. Eratosthenes and Emily
might point out that useful observations can tell you something you didn’t
know before—even on a budget—if you approach the topic with just a little
more creativity and less defeatism.
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Eratosthenes, Enrico, and Emily inspire us in different ways. Eratos-
thenes had no way of computing the error on his estimate, since statistical
methods for assessing uncertainty would not be around for two more mil-
lennia. However, if he would have had a way to compute uncertainty,
the uncertainties in measuring distances between cities and exact angles of
shadows might have easily accounted for his relatively small error. Fortu-
nately, we do have those tools available to us. The concept of measurement
as “uncertainty reduction” and not necessarily the elimination of uncertainty
is a central theme of this book.

We learn a related but different lesson from Enrico Fermi. Since he won
a Nobel Prize, it’s safe to assume that Fermi was an especially proficient ex-
perimental and theoretical physicist. But the example of his Fermi question
showed, even for non-Nobel Prize winners, how we can estimate things
that, at first, seem too difficult even to attempt to estimate. Although his in-
sight on advanced experimental methods of all sorts would be enlightening,
I find that the reason intangibles seem intangible is almost never for lack
of the most sophisticated measurement methods. Usually things that seem
immeasurable in business reveal themselves to much simpler methods of
observation, once we learn to see through the illusion of immeasurability.
In this context, Fermi’s value to us is in how we determine our current state
of knowledge about a thing as a precursor to further measurement.

Unlike Fermi’s example, Emily’s example is not so much about initial
estimation since her experiment made no prior assumptions about how
probable the therapeutic touch claims were. Nor was her experiment about
using a clever calculation instead of infeasible observations, like Eratos-
thenes. Her calculation was merely based on standard sampling methods
and did not itself require a leap of insight like Eratosthenes’s simple geome-
try calculation. But Emily does demonstrate that useful observations are not
necessarily complex, expensive, or even, as is sometimes claimed, beyond
the comprehension of upper management even for ephemeral concepts like
touch therapy (or strategic alignment, employee empowerment, improved
communication, etc.).

And as useful as these lessons are, we will build even further on the
lessons of Eratosthenes, Enrico, and Emily. We will learn ways to assess
your current uncertainty about a quantity that improve on Fermi’s methods,
some sampling methods that are in some ways even simpler than what
Emily used, and simple methods that would have allowed even Eratosthenes
to improve on his estimate of the size of a world that nobody had yet
traveled.

Given examples like this, we have to wonder why anyone ever believes
something to be beyond measurement. There are only a few arguments for
believing something to be immeasurable. In the next chapter, we will discuss
why each of these arguments is flawed.



20 Measurement: The Solution Exists

Notes

. M. Lial and C. Miller, Trigonometry, 3rd ed. (Chicago: Scott, Foresman, 1988).

. Two Frenchmen, Pierre-Francois-André Méchain and Jean-Baptiste-Joseph, calcu-
lated Earth’s circumference over a seven-year period during the French Revolution
on a commission to define a standard for the meter. (The meter was originally
defined to be one 10-millionth of the distance from the equator to the pole.)
Letter to the Editor, New York Times, April 7, 1998.

“Therapeutic Touch: Fact or Fiction?” Nurse Week, June 7, 1998.

“A Child’s Paper Poses a Medical Challenge” New York Times, April 1, 1998.
Scott Adams, The Dilbert Principle (New York: Harper Business, 1990).
Although a not-for-profit, Mitre still has to keep operations running by generating
revenue through consulting billed to federal agencies.

8. Doug Hubbard, “Critical Analysis” column accompanying “An Audit Trail,” CIO,
May 1, 2000.

DN =

RN



CHAPTER 3

The Illusion of Intangibles:
Why Immeasurables Aren’t

here are just three reasons why people think that something can’t be

measured. Each of these three reasons is actually based on miscon-
ceptions about different aspects of measurement. I will call them concept,
object, and method.

1. Concept of measurement. The definition of measurement itself is widely
misunderstood. If one understands what “measurement” actually means,
a lot more things become measurable.

2. Object of measurement. The thing being measured is not well defined.
Sloppy and ambiguous language gets in the way of measurement.

3. Methods of measurement. Many procedures of empirical observation
are not well known. If people were familiar with some of these basic
methods, it would become apparent that many things thought to be
immeasurable are not only measurable but may already have been
measured.

A good way to remember these three common misconceptions is by
using a mnemonic like “howtomeasureanything.com,” where the ¢, o, and
m in “.com” stand for concept, object, and method. Once we learn that these
three objections are misunderstandings of one sort or another, it becomes
apparent that everything really is measurable.

In addition to these reasons why something can’t be measured, there
are also three common reasons why something “shouldn’t” be measured.
The reasons often given for why something “shouldn’t” be measured are:

1. The economic objection to measurement (i.e., any measurement would
be too expensive)

21
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2. The general objection to the usefulness and meaningfulness of statistics
(i.e., “You can prove anything with statistics.”)

3. The ethical objection (i.e., we shouldn’t measure it because it would be
immoral to measure it)

Unlike the concept, object, and method list, these three objections don’t
really argue that a measurement is impossible, just that it is not cost effec-
tive, that measurements in general are meaningless, or that it is morally
objectionable to measure it. I will show that only the economic objection
has any potential merit, but even that one is overused.

The Concept of Measurement

As far as the propositions of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality.
—Albert Einstein

Although this may seem a paradox, all exact science is based on the idea

of approximation. If a man tells you he knows a thing exactly, then you
can be safe in inferring that you are speaking to an inexact man.

—Bertrand Russell (1873-1970), British mathematician

and philosopher

For those who believe something to be immeasurable, the concept of
measurement, or rather the misconception of it, is probably the most impor-
tant obstacle to overcome. If we incorrectly think that measurement means
meeting some nearly unachievable standard of certainty, then few things
will seem measurable. I routinely ask those who attend my seminars or
conference lectures what they think “measurement” means. (It’s interesting
to see how much thought this provokes among people who are actually
in charge of some measurement initiative in their organization.) T usually
get answers like “to quantify something,” “to compute an exact value,” “to
reduce to a single number,” or “to choose a representative amount,” and
so on. Implicit or explicit in all of these answers is that measurement is
certainty—an exact quantity with no room for error. If that was really what
the term means, then, indeed, very few things would be measurable.

But when scientists, actuaries, or statisticians perform a measurement,
they seem to be using a different de facto definition. In their special fields,
each of these professions has learned the need for a precise use of certain
words sometimes very different from how the general public uses a word.
Consequently, members of these professions usually are much less confused
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about the meaning of the word “measurement.” The key to this precision
is that their specialized terminology goes beyond a one-sentence definition
and is part of a larger theoretical framework. In physics, for example, gravity
is not just some dictionary definition, but a component of specific equations
that relate gravity to such concepts as mass, distance, and its effect on
space and time. Likewise, if we want to understand measurement with that
same level of precision, we have to know something about the theoretical
framework behind it—or we really don’t understand it at all.

Definition of Measurement

Measurement: A quantitatively expressed reduction of uncertainty
based on one or more observations.

For all practical purposes, the scientific crowd treats measurement as a
result of observations that quantitatively reduce uncertainty. A mere reduc-
tion, not necessarily elimination, of uncertainty will suffice for a measure-
ment. Even if scientists don’t articulate this definition exactly, the methods
they use make it clear that this is what they really mean. The fact that
some amount of error is unavoidable but can still be an improvement on
prior knowledge is central to how experiments, surveys, and other scientific
measurements are performed.

The practical differences between this definition and the most popular
definitions of measurement are enormous. Not only does a true measure-
ment not need to be infinitely precise to be considered a measurement,
but the lack of reported erro—implying the number is exact—can be an
indication that empirical methods, such as sampling and experiments, were
not used (i.e., it’s not really a measurement at all). Real scientific methods
report numbers in ranges, such as “the average yield of corn farms using
this new seed increased between 10% and 18% (95% confidence interval).”
Exact numbers reported without error might be calculated “according to
accepted procedure,” but, unless they represent a 100% complete count
(e.g., the change in my pocket), they are not necessarily based on em-
pirical observation (e.g., Enron’s, Lehman Brothers’, or Fannie Mae’s asset
valuations).

This conception of measurement might be new to many readers, but
there are strong mathematical foundations—as well as practical reasons—for
looking at measurement this way. Measurement is, at least, a type of infor-
mation, and, as a matter of fact, there is a rigorous theoretical construct
for information. A field called “information theory” was developed in the
1940s by Claude Shannon. Shannon was an American electrical engineer,



24 Measurement: The Solution Exists

mathematician, and all-around savant who dabbled in robotics and com-
puter chess programs.

In 1948, he published a paper titled “A Mathematical Theory of
Communication,”? which laid the foundation for information theory and,
I would say, measurement in general. Current generations don’t entirely
appreciate this, but his contribution can’t be overstated. Information theory
has since become the basis of all modern signal processing theory. It is the
foundation for the engineering of every electronic communications system,
including every microprocessor ever built. Tt is the theoretical ancestor that
eventually enabled me to write this book on my laptop and for you to buy
this book on Amazon or read it on Kindle.

Shannon proposed a mathematical definition of information as the
amount of uncertainty reduction in a signal, which he discussed in terms of
the “entropy” removed by a signal. To Shannon, the receiver of information
could be described as having some prior state of uncertainty. That is, the
receiver already knew something, and the new information merely removed
some, not necessarily all, of the receiver’s uncertainty. The receiver’s prior
state of knowledge or uncertainty can be used to compute such things as the
limits to how much information can be transmitted in a signal, the minimal
amount of signal to correct for noise, and the maximum data compression
possible.

This “uncertainty reduction” point of view is what is critical to busi-
ness. Major decisions made under a state of uncertainty—such as whether
to approve large information technology (IT) projects or new product
development—can be made better, even if just slightly, by reducing un-
certainty. Such an uncertainty reduction can be worth millions.

So a measurement doesn’t have to eliminate uncertainty after all. A mere
reduction in uncertainty counts as a measurement and possibly can be worth
much more than the cost of the measurement. But there is another key
concept of measurement that would surprise most people: A measurement
doesn’t have to be about a quantity in the way that we normally think of it.
Note where the definition I offer for measurement says a measurement is
“quantitatively expressed.” The uncertainty, at least, has to be quantified, but
the subject of observation might not be a quantity itself—it could be entirely
qualitative, such as a membership in a set. For example, we could “measure”
whether a patent will be awarded or whether a merger will happen while
still satisfying our precise definition of measurement. But our uncertainty
about those observations must be expressed quantitatively (e.g., there is an
85% chance we will win the patent dispute; we are 93% certain our public
image will improve after the merger, etc.).

The view that measurement applies to questions with a yes/no answer
or other qualitative distinctions is consistent with another accepted school of
thought on measurement. In 1946, the psychologist Stanley Smith Stevens
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wrote an article called “On the Theory of Scales and Measurement.”* In
it he describes different scales of measurement, including “nominal” and
“ordinal.” Nominal measurements are simply “set membership” statements,
such as whether a fetus is male or female, or whether you have a particular
medical condition. In nominal scales, there is no implicit order or sense of
relative size. A thing is simply in one of the possible sets.

Ordinal scales, however, allow us to say one value is “more” than
another, but not by how much. Examples of this are the four-star rating
system for movies or Mohs hardness scale for minerals. A “4” on either
of these scales is “more” than a “2” but not necessarily twice as much. In
contrast, homogeneous units such as dollars, kilometers, liters, volts, and
the like tell us not just that one thing is more than another, but by how
much. These “ratio” scales can also be added, subtracted, multiplied, and
divided in a way that makes sense. Whereas seeing four one-star movies
is not necessarily as good as seeing one four-star movie, a four-ton rock
weighs exactly as much as four one-ton rocks.

Nominal and ordinal scales might challenge our preconceptions about
what “scale” really means, but they can still be useful observations about
things. To a geologist, it is useful to know that one rock is harder than an-
other, without necessarily having to know exactly how much harder—which
is all that the Mohs hardness scale really does.

Stevens and Shannon each challenge different aspects of the popular
definition of measurement. Stevens was more concerned about a taxon-
omy of different types of measurement but was silent on the all-important
concept of uncertainty reduction. Shannon, working in a different field al-
together, was probably unaware of and unconcerned with how Stevens, a
psychologist, mapped out the field of measurements just two years earlier.
However, I don’t think a practical definition of measurement that accounts
for all the sorts of things a business might need to measure is possible
without incorporating both of these concepts.

There is even a field of study called “measurement theory” that attempts
to deal with both of these issues and more. In measurement theory, a mea-
surement is a type of “mapping” between the thing being measured and
numbers. The theory gets very esoteric, but if we focus on the contributions
of Shannon and Stevens, there are many lessons for managers. The com-
monplace notion that presumes measurements are exact quantities ignores
the usefulness of simply reducing uncertainty, if eliminating uncertainty is
not possible or economical. And not all measurements even need to be
about a conventional quantity. Measurement applies to discrete, nominal
points of interest like “Will we win the lawsuit?” or “Will this research and
development project succeed?” as well as continuous quantities like “How
much did our revenue increase because of this new product feature?” In
business, decision makers make decisions under uncertainty. When that
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uncertainty is about big, risky decisions, then uncertainty reduction has a
lot of value—and that is why we will use this definition of measurement.

The Object of Measurement

A problem well stated is a problem balf solved.
—Charles Kettering (1876-1958), American inventor, holder of 300
patents, including electrical ignition for automobiles

There is no greater impediment to the advancement of knowledge than
the ambiguity of words.
—Thomas Reid (1710-1769), Scottish philosopher

Even when the more useful concept of measurement (as uncertainty-
reducing observations) is adopted, some things seem immeasurable because
we simply don’t know what we mean when we first pose the question. In
this case, we haven’t unambiguously defined the object of measurement.
If someone asks how to measure “strategic alignment” or “flexibility” or
“customer satisfaction,” I simply ask: “What do you mean, exactly?” It is
interesting how often people further refine their use of the term in a way
that almost answers the measurement question by itself.

In my seminars, I often ask the audience to challenge me with difficult
or seemingly impossible measurements. In one case, a participant offered
“mentorship” as something difficult to measure. I said, “That sounds like
something one would like to measure. I might say that more mentorship is
better than less mentorship. I can see people investing in ways to improve
it, so I can understand why someone might want to measure it. So, what
do you mean by ‘mentorship’?” The person almost immediately responded,
“I don’t think T know,” to which I said, “Well, then maybe that’'s why you
believe it is hard to measure. You haven’t figured out what it is.”

Once managers figure out what they mean and why it matters, the issue
in question starts to look a lot more measurable. This is usually my first level
of analysis when I conduct what I've called “clarification workshops.” It’s
simply a matter of clients stating a particular, but initially ambiguous, item
they want to measure. I then follow up by asking “What do you mean by
<fill in the blank>?" and “Why do you care?”

This applies to a wide variety of measurement problems, but I've had
many occasions to apply this to IT in particular. In 2000, when the Depart-
ment of Veterans Affairs asked me to help define performance metrics for IT
security, I asked: “What do you mean by ‘IT security’?” and over the course
of two or three workshops, the department staff defined it for me. They
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eventually revealed that what they meant by “IT security” were things like
a reduction in unauthorized intrusions and virus attacks. They proceeded
to explain that these things impact the organization through fraud losses,
lost productivity, or even potential legal liabilities (which they may have
narrowly averted when they recovered a stolen notebook computer in 2006
that contained the Social Security numbers of 26.5 million veterans).

All of the identified impacts were, in almost every case, obviously mea-
surable. “Security” was a vague concept until they decomposed it into what
they actually expected to observe. Still, clients often need further direction
when defining these original concepts in a way that lends them to measure-
ment. For the tougher jobs, I resort to using a what I call a “clarification
chain” or, if that doesn’'t work, perhaps a type of thought experiment.

The clarification chain is just a short series of connections that should
bring us from thinking of something as an intangible to thinking of it as a
tangible. First, we recognize that if X is something that we care about, then
X, by definition, must be detectable in some way. How could we care about
things like “quality,” “risk,” “security,” or “public image” if these things were
totally undetectable, in any way, directly or indirectly? If we have reason to
care about some unknown quantity, it is because we think it corresponds
to desirable or undesirable results in some way. Second, if this thing is
detectable, then it must be detectable in some amount. If you can observe
a thing at all, you can observe more of it or less of it. Once we accept that
much, the final step is perhaps the easiest. If we can observe it in some
amount, then it must be measurable.

For example, once we figure out that we care about an “intangible”
like public image because it impacts specific things like advertising by cus-
tomer referral, which affects sales, then we have begun to identify how
to measure it. Customer referrals are not only detectable, but detectable in
some amount; this means they are measurable. I may not specifically take
workshop participants through every part of the clarification chain on every
problem, but if we can keep these three components in mind, the method
is fairly successful.

Clarification Chain

1. If it matters at all, it is detectable/observable.

2. If it is detectable, it can be detected as an amount (or range of
possible amounts).

3. If it can be detected as a range of possible amounts, it can be
measured.
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If the clarification chain doesn’t work, I might try a “thought exper-
iment.” Imagine you are an alien scientist who can clone not just sheep
or even people but entire organizations. Let’s say you were investigating a
particular fast food chain and studying the effect of a particular intangible,
say, “employee empowerment.” You create a pair of the same organization
calling one the “test” group and one the “control” group. Now imagine that
you give the test group a little bit more “employee empowerment” while
holding the amount in the control group constant. What do you imagine
you would actually observe—in any way, directly or indirectly—that would
change for the first organization? Would you expect decisions to be made
at a lower level in the organization? Would this mean those decisions are
better or faster? Does it mean that employees require less supervision? Does
that mean you can have a “flatter” organization with less management over-
head? If you can identify even a single observation that would be different
between the two cloned organizations, then you are well on the way to
identifying how you would measure it.

It is also imperative to state why we want to measure something in order
to understand what is really being measured. The purpose of the measure-
ment is often the key to defining what the measurement is really supposed
to be. In the first chapter, I argued that all measurements of any interest to
a manager must support at least one specific decision. For example, I might
be asked to help someone measure the value of crime reduction. But when
I ask why they care about measuring that, I might find that what they really
are interested in is building a business case for a specific biometric identifica-
tion system for criminals. Or I might be asked how to measure collaboration
only to find that the purpose of such a measurement would be to resolve
whether a new document management system is required. In each case, the
purpose of the measurement gives us clues about what the measure really
means and how to measure it. In addition, we find several other potential
items that may need to be measured to support the relevant decision.

Identifying the object of measurement really is the beginning of almost
any scientific inquiry, including the truly revolutionary ones. Business man-
agers need to realize that some things seem intangible only because they
just haven’t defined what they are talking about. Figure out what you mean
and you are halfway to measuring it.

The Methods of Measurement

Some things may seem immeasurable only because the person considering
the measurement is not aware of basic measurement methods—such as
various sampling procedures or types of controlled experiments—that can
be used to solve the problem. A common objection to measurement is that
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the problem is unique and has never been measured before, and there
simply is no method that would ever reveal its value. Such an objection
invariably says more about the scientific literacy of the person who claims
it than about the fundamental limitations of empirical methods.

It is encouraging to know that several proven measurement methods
can be used for a variety of issues to help measure something you may
have at first considered immeasurable. Here are a few examples:

Measuring with very small random samples: You can learn something
from a small sample of potential customers, employees, and so on
especially when there is currently a great deal of uncertainty.
Measuring the population of things that you will never see all of: There
are clever and simple methods for measuring the number of a certain
type of fish in the ocean, the number of plant species in the rain forests,
the number of production errors in a new product, or the number of
unauthorized access attempts in your system that go undetected.
Measuring when mamny other, even unknown, variables are involved:
We can determine whether the new “quality program” is the reason for
the increase in sales as opposed to the economy, competitor mistakes,
or a new pricing policy.

Measuring the risk of rare events: The chance of a launch failure of a
rocket that has never flown before, or another September 11 attack,
another levee failure in New Orleans, or another major financial crisis
can all be informed in valuable ways through observation and reason.
Measuring subjective preferences and values: We can measure the value
of art, free time, or reducing risk to your life by assessing how much
people actually pay for these things.

Most of these approaches to measurements are just variations on basic
methods involving different types of sampling and experimental controls
and, sometimes, choosing to focus on different types of questions. Basic
methods of observation like these are mostly absent from certain decision-
making processes in business, perhaps because such scientific procedures
are considered to be some elaborate, overly formalized process. Such meth-
ods are not usually considered to be something you might do, if necessary,
on a moment’s notice with little cost or preparation. And yet they can be.

Here is a very simple example of a quick measurement anyone can
do with an easily computed statistical uncertainty. Suppose you want to
consider more telecommuting for your business. One relevant factor when
considering this type of initiative is how much time the average employee
spends commuting every day. You could engage in a formal office-wide
census of this question, but it would be time consuming and expensive and
will probably give you more precision than you need. Suppose, instead,
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you just randomly pick five people. There are some other issues we’ll get
into later about what constitutes “random,” but, for now, let’s just say you
cover your eyes and pick names from the employee directory. Call these
people and, if they answer, ask them how long their commute typically is.
When you get answers from five people, stop. Let’s suppose the values you
get are 30, 60, 45, 80, and 60 minutes. Take the highest and lowest values
in the sample of five: 30 and 80. There is a 93.75% chance that the median
of the entire population of employees is between those two numbers. I call
this the “Rule of Five.” The Rule of Five is simple, it works, and it can be
proven to be statistically valid for a wide range of problems. With a sample
this small, the range might be very wide, but if it was significantly narrower
than your previous range, then it counts as a measurement.

Rule of Five

There is a 93.75% chance that the median of a population is between
the smallest and largest values in any random sample of five from that
population.

It might seem impossible to be 93.75% certain about anything based on
a random sample of just five, but it works. To understand why this method
works, it is important to note that the Rule of Five estimates the median of
a population. The median is the point where half the population is above it
and half is below it. If we randomly picked five values that were all above
the median or all below it, then the median would be outside our range.
But what is the chance of that, really?

The chance of randomly picking a value above the median is, by def-
inition, 50%—the same as a coin flip resulting in “heads.” The chance of
randomly selecting five values that happen to be all above the median is
like flipping a coin and getting heads five times in a row. The chance of
getting heads five times in a row in a random coin flip is 1 in 32, or 3.125%;,
the same is true with getting five tails in a row. The chance of not getting
all heads or all tails is then 100% — 3.125% x 2, or 93.75%. Therefore, the
chance of at least one out of a sample of five being above the median and
at least one being below is 93.75% (round it down to 93% or even 90%
if you want to be conservative). Some readers might remember a statistics
class that discussed statistics for very small samples. Those methods were
more complicated than the Rule of Five, but, for reasons I'll discuss in more
detail later, the answer is really not much better.

We can improve on a rule of thumb like this by using simple methods to
account for certain types of bias. Perhaps recent, but temporary, construction
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increased everyone’s “average commute time” estimate. Or perhaps people
with the longest commutes are more likely to call in sick or otherwise not
be available for your sample. Still, even with acknowledged shortcomings,
the Rule of Five is something that the person who wants to develop an
intuition for measurement keeps handy.

Later I'll consider various methods that are proven to reduce uncertainty
further. Some involve (slightly) more elaborate sampling or experimental
methods. Some involve methods that are statistically proven simply to re-
move more error from experts’ subjective judgments. There are all sorts of
issues to consider if we wish to make even more precise estimates, but,
remember, as long as an observation told us something we didn’'t know
before, it was a measurement.

In the meantime, it’s useful to consider why the objection “A method
doesn’t exist to measure this thing” is really not valid. In business, if the data
for a particular question cannot already be found in existing accounting re-
ports or databases, the object of the question is too quickly labeled as intan-
gible. Even if measurements are thought to be possible, often the methods to
do so are considered the domain of specialists or not practical for business-
people to engage in themselves. Fortunately, this does not have to be the
case. Just about anyone can develop an intuitive approach to measurement.

An important lesson comes from the origin of the word experiment. “Ex-
periment” comes from the Latin ex-, meaning “of/from,” and periri, mean-
ing “try/attempt.” It means, in other words, to get something by trying.
The statistician David Moore, the 1998 president of the American Statistical
Association, goes so far as to say: “If you don’t know what to measure,
measure anyway. You'll learn what to measure.”> We might call Moore’s
approach the Nike method: the “Just do it” school of thought. This sounds
like a “Measure first, ask questions later” philosophy of measurement, and I
can think of a few shortcomings to this approach if taken to extremes. But
it has some significant advantages over much of the current measurement-
stalemate thinking of some managers.

Many decision makers avoid even trying to make an observation by
thinking of a variety of obstacles to measurements. If you want to measure
how much time people spend in a particular activity by using a survey, they
might say: “Yes, but people won’t remember exactly how much time they
spend.” Or if you were getting customer preferences by a survey, they might
say: “There is so much variance among our customers that you would need a
huge sample.” If you were attempting to show whether a particular initiative
increased sales, they respond: “But lots of factors affect sales. You’'ll never
know how much that initiative affected it.” Objections like this are already
presuming what the results of observations will be. The fact is, these people
have no idea whether such issues will make measurement futile. They
simply presume it. Such critics are working with a set of presumptions about
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the difficulty of measurement. They might even claim to have a background
in measurement that provides some authority (i.e., they took two semesters
of statistics 20 years ago). I won’t say those presumptions actually turn out
to be true or untrue in every particular case. I will say they are unproductive
if they are simply presumptions. What can be inferred from the data already
possessed or the likelihood that new data would reduce uncertainty are
conclusions that can be made after some specific calculations. But such
calculations are virtually never attempted prior to making claims about the
impossibility of measurement.

Let's make some deliberate and productive assumptions instead of
ill-considered presumptions. I propose a contrarian set of assumptions
that—by being assumptions—may not always be true in every single case
but in practice turn out to be much more effective.

Four Useful Measurement Assumptions

1. Your problem is not as unique as you think.

2. You have more data than you think.

3. You need less data than you think.

4. An adequate amount of new data is more accessible than you think.

Assumption 1

It's been done before. No matter how difficult or “unique” your measure-
ment problem seems to you, assume it has been done already by someone
else, perhaps in another field. If this assumption turns out not to be true,
then take comfort in knowing that you might have a shot at a Nobel Prize
for the discovery. Seriously, I've noticed that there is a tendency among
professionals in every field to perceive their field as unique in terms of
the burden of uncertainty. The conversation generally goes something like
this: “Unlike other industries, in our industry every problem is unique and
unpredictable,” or “My industry just has too many factors to allow for quan-
tification,” and so on. I've done work in lots of different fields, and some
individuals in most of these fields make these same claims. So far, each one
of them has turned out to have fairly standard measurement problems not
unlike those in other fields.

Assumption 2

You have far more data than you think. Assume the information you need
to answer the question is somewhere within your reach and if you just
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took the time to think about it, you might find it. Few executives are even
remotely aware of all the data that are routinely tracked and recorded in
their organization. The things you care about measuring are also things that
tend to leave tracks, if you are resourceful enough to find them.

Assumption 3

You need far less data than you think. How much data is needed to reduce
uncertainty sufficiently for some given problem can be estimated with a
particular type of calculation. When we work out how much “uncertainty
reduction” we get from a given set of data, I find that managers are often
surprised by how much they learned from a little bit of data. This is espe-
cially true when they had a lot of uncertainty to begin with. This is why
there are a lot of problems where the Rule of Five really does reduce un-
certainty more than you might first think. (I've met statisticians who didn’t
believe in the Rule of Five until they worked out the math for themselves.)
But, as Eratosthenes shows us, there are clever ways to squeeze interesting
findings from minute amounts of data. Enrico showed us that we can get
useful information by simply decomposing a problem and estimating its
components. Emily showed us that we don’t need a giant clinical trial to
debunk a popular healthcare method.

We will find in later chapters that the first few observations are usually
the highest payback in uncertainty reduction for a given amount of effort.
In fact, it is a common misconception that the higher your uncertainty, the
more data you need to significantly reduce it. On the contrary, when you
know next to nothing, you don’'t need much additional data to tell you
something you didn’t know before.

Having More than and Needing Less than You Think: An
Example from Measuring Teaching Effectiveness

Here is one extreme case of the “You have more data than you
think” and the “You need less data than you think” assumptions from
the world of measuring teaching methods in public school systems.
Dr. Bruce Law is the “Head of School” for Chicago Virtual Charter
School (CVCS). CVCS is an innovative public school that teaches primar-
ily through online, remote-learning methods that emphasize individual-
ized curriculum. Dr. Law asked me to help define some useful metrics
and measurement methods to evaluate the performance of teachers
and the school. As is always the case, the first big part of the issue was

(continued)
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(Continued)

defining what “performance” meant in these situations and how this
information is expected to affect real decisions.

Dr. Law’s primary concern was, at first, not having enough data to
measure quantities like “student engagement” and “differentiation” as
outcomes of effective teaching. But as we talked, I found that the major-
ity of the classes are taught online with an interactive Web-conferencing
tool that records every teaching session. This online tool allows students
to “raise hands,” ask questions by either voice or text chat, and interact
with the teacher in the instructional session. Everything the teachers or
students say or do online is recorded.

The problem was not a lack of data but the existence of so much
data that wasn’t in a structured, easily analyzed database.Like most
managers confronted with a similar situation, CVCS imagined it could
not measure anything meaningful without reviewing all the data (i.e.,
listening to every minute of every session).So we defined a couple
of sampling methods that allowed the managers to select recordings
of sessions and particular slices of time, each a minute or two long,
throughout a recorded session. For those randomly chosen time slices,
they could sample what the teacher was saying and what the students
were doing.

As Dr. Law put it, they went from thinking they had no relevant
data, to “Yes, we have lots of data, but who has to the time to go
through all of that?” to “We can get a good sense of what is going on
instructionally without looking at all of it.”

Assumption 4

New observations are more accessible than you think, and there is a useful
measurement that is much simpler than you think. Assume the first ap-
proach you think of is the “hard way” to measure. Assume that, with a
little more ingenuity, you can identify an easier way. The Cleveland Or-
chestra, for example, wanted to measure whether its performances were
improving. Many business analysts might propose some sort of randomized
patron survey repeated over time. Perhaps they might think of questions
that rate a particular performance (if the patron remembers) from “poor”
to “excellent,” and maybe they would evaluate the performance on several
parameters and combine all these parameters into a “satisfaction index.”
The Cleveland Orchestra was just a bit more resourceful with the data avail-
able: It started counting the number of standing ovations. While there is no
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obvious difference among performances that differ by a couple of standing
ovations, if we see a significant increase over several performances with a
new conductor, then we can draw some useful conclusions about that new
conductor. It was a measurement in every sense, a lot less effort than a
survey, and—some would say—more meaningful. (I can’t disagree.)

So, don’t assume that the only way to reduce your uncertainty is to use
an impractically sophisticated method. Are you trying to get published in
a peer-reviewed journal, or are you just trying to reduce your uncertainty
about a real-life business decision? Think of measurement as iterative. Start
measuring it. You can always adjust the method based on initial findings.

Above all else, the intuitive experimenter, as the origin of the word
“experiment” denotes, makes an attempt. It's a habit. Unless you be-
lieve you already know in advance the precise outcome of an attempted
observation—of any kind—then that observation tells you something you
didn’t already know. Make a few more observations, and you know even
more.

There might be the rare case where only for lack of the most sophisti-
cated measurement methods, something seems immeasurable. But for those
things labeled “intangible,” more advanced, sophisticated methods are al-
most never what are lacking. Things that are thought to be intangible tend
to be so uncertain that even the most basic measurement methods are likely
to reduce some uncertainty.

Economic Objections to Measurement

We just reviewed that the three reasons why it may appear that something
can’t be measured—the concept, object, and method objections—are all
simply illusions. But there are also objections to measurement based not on
the belief that a thing can’t be measured but that it shouldn’t be measured.

The only valid basis to say that a measurement shouldn’t be made
is that the cost of the measurement exceeds its benefits. This certainly
happens in the real world. In 1995, I developed the method I called “Applied
Information Economics”—a method for assessing uncertainty, risks, and
intangibles in any type of big, risky decision you can imagine. A key step
in the process (in fact, the reason for the name) is the calculation of the
economic value of information. I'll say more about this later, but a proven
formula from the field of decision theory allows us to compute a monetary
value for a given amount of uncertainty reduction. I put this formula in
an Excel macro and, for years, I've been computing the economic value
of measurements on every variable in dozens of various large business
decisions. 1 found some fascinating patterns through this calculation but,
for now, I'll mention just one: Most of the variables in a business case had
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an information value of zero. In each business case, something like one to
four variables were both uncertain enough and had enough bearing on the
outcome of the decision to merit deliberate measurement efforts.

Only a Few Things Matter—but They Usually
Matter a Lot

In business cases, most of the variables have an “information value” at
or near zero. But usually at least some variables have an information
value that is so high that some deliberate measurement effort is easily
justified.

However, while there are certainly variables that do not justify mea-
surement, a persistent misconception is that unless a measurement meets
an arbitrary standard (e.g., adequate for publication in an academic journal
or meets generally accepted accounting standards), it has no value. This is
a slight oversimplification, but what really makes a measurement of high
value is a lot of uncertainty combined with a high cost of being wrong.
Whether it meets some other standard is irrelevant. If you are betting a
lot of money on the outcome of a variable that has a lot of uncertainty,
then even a marginal reduction in your uncertainty has a computable mon-
etary value. For example, suppose you think developing an expensive new
product feature will increase sales in one particular demographic by up
to 12%, but it could be a lot less. Furthermore, you believe the initiative
is not cost-justified unless sales are improved by at least 9%. If you make
the investment and the increase in sales turns out to be less than 9%, then
your effort will not reap a positive return. If the increase in sales is very
low, or even possibly negative, then the new feature will be a disaster
and a lot of money will have been lost. Measuring this would have a very
high value.

When someone says a variable is “too expensive” or “too difficult” to
measure, we have to ask “Compared to what?” If the information value of
the measurement is literally or virtually zero, of course, no measurement is
justified. But if the measurement has any significant value, we must ask: “Is
there any measurement method at all that can reduce uncertainty enough to
justify the cost of the measurement?” Once we recognize the value of even
partial uncertainty reduction, the answer is usually “Yes.”

A variation on the economic objection to measurement is how it
influences not management decisions but the behaviors of others in ways
that may or may not be the intended outcome. For example, performance
metrics for a help desk based on how many calls it handles may encourage
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help desk workers to take a call and conclude it without solving the client’s
problem. A well-known example of this is the so-called Houston Miracle
of the Texas school system in the 1990s. Public schools were under a new
set of performance metrics to hold educators accountable for results. It
is now known that the net effect of this “miracle” was that schools were
incentivized to find ways to drop low-achieving students from the rolls.
This is hardly the outcome most taxpayers thought they were funding.

This is an economic objection because the claim is that the real out-
comes are not the benefits originally aimed for and, in fact, can have signif-
icantly negative benefits. But this confuses the issues of measurements and
incentives. For any given set of measurements, there are a large number
of possible incentive structures. This kind of objection also sometimes pre-
sumes that since one set of measurements was part of an unproductive
incentive program, then any measurements must incentivize unproduc-
tive behavior. Nothing could be further from the truth. If you can define
the outcome you really want, give examples of it, and identify how those
consequences are observable, then you can design measurements that will
measure the outcomes that matter. The problem is that, if anything, man-
agers were simply measuring what seemed simplest to measure (i.e., just
what they currently knew how to measure), not what mattered most.

The Broader Objection to the Usefulness of “Statistics”

After all, facts ave facts, and although we may quote one to another with
a chuckle the words of the Wise Statesman, “Lies—damned lies—and
statistics,” still there are some easy figures the simplest must understand,

and the astutest cannot wriggle out of.
—Leonard Courtney, First Baron Courtney, Royal Statistical Society
president (1897-1899)

Another objection is based on the idea that, even though a measurement
is possible, it would be meaningless because statistics and probability itself
are meaningless (“Lies, Damned Lies, and Statistics,” as it were®). Even
among educated professionals, there are often profound misconceptions
about simple statistics. Some are so stunning that it’s hard to know where
to begin to address them. Here are a few examples I've run into:

“Everything is equally likely, because we don’t know what will happen.”
—Mentioned by someone who attended one of my seminars
“I don’t have any tolerance for risk at all because I never take risks.”

—The words of a midlevel manager at an insurance company client of
mine
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“How can I know the range if I don’t even know the mean?”

—Said by a client of Sam Savage, PhD, colleague and promoter of
statistical analysis methods

“How can we know the probability of a coin landing on heads is 50%
if we don’t know what is going to happen?”

—A graduate student (no kidding) who attended a lecture I gave at the
London School of Economics

“You can prove anything with statistics.”

—A very widely used phrase about statistics

Let’s address this last one first. I will offer a $10,000 prize, right now, to
anyone who can use statistics to prove the statement “You can prove any-
thing with statistics.” By “prove” I mean in the sense that it can be published
in any major math or science journal. The test for this will be that it is pub-
lished in any major math or science journal (such a monumental discovery
certainly will be). By “anything” T mean, literally, anything, including every
statement in math or science that has already been conclusively disproved. I
will use the term “statistics,” however, as broadly as possible. The recipient
of this award can resort to any accepted field of mathematics and science
that even partially addresses probability theory, sampling methods, decision
theory, and so on. I first published this prize in 2007 and, like the Randi
Prize for proof of the paranormal (mentioned in Chapter 2), it still goes un-
claimed. But unlike the Randi Prize, not a single person has even attempted
to claim it. Perhaps the claim “You can prove anything with statistics” is
even more obviously absurd than “I can read your mind.”

The point is that when people say “You can prove anything with statis-
tics,” they probably don’t really mean “statistics,” they just mean broadly the
use of numbers (especially, for some reason, percentages). And they really
don’t mean “anything” or “prove.” What they really mean is that “num-
bers can be used to confuse people, especially the gullible ones lacking
basic skills with numbers.” With this, I completely agree but it is an entirely
different claim.

The other statements I just listed tend to be misunderstandings about
more fundamental concepts behind probabilities, risk, and measurements in
general. Clearly, the reason we use probabilities is specifically because we
can’t be certain of outcomes. Obviously, we all take some risks just driving
to work, and we all, therefore, have some level of tolerance for risk.

As with the “You can prove anything with statistics” claim, T usually find
that the people making these other irrational claims don’t even quite mean
what they say, and their own choices will betray their stated beliefs. If you
ask someone to enter a betting pool to guess the outcome of the number of
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heads in 12 coin tosses, even the person who claims odds can’t be assigned
will prefer the numbers around or near 6 heads. The person who claims to
accept no risk at all will still fly to Moscow using Aeroflot (an airline with a
safety record much worse than any U.S. carrier) to pick up a $1 million prize.
The basic misunderstandings around statistics and probabilities come in a
bewildering array that can’t be completely anticipated. Some publications,
such as the journal of Statistics Education, are almost entirely dedicated
to identifying basic misconceptions, even among business executives, and
ways to overcome them. I hope the reader who finishes this book will have
much fewer of these basic misconceptions.

Ethical Objections to Measurement

Let’s discuss one final reason why someone might argue that a measurement
shouldn’t be made. This objection comes in the form of some sort of eth-
ical objection to measurement. The potential accountability and perceived
finality of numbers combine with a previously learned distrust of “statistics”
to create resistance to measurement. Measurements can even sometimes be
perceived as “dehumanizing” an issue. There is often a sense of righteous
indignation when someone attempts to measure touchy topics, such as the
value of an endangered species or even a human life. Yet it is done and
done routinely for good reason.

The Environmental Protection Agency (EPA) and other government
agencies have to allocate limited resources to protect our environment, our
health, and even our lives. One of the many IT investments I helped the
EPA assess was a Geographic Information System (GIS) for better tracking
of methyl mercury—a substance suspected of actually lowering the 1Q of
children who are exposed to high concentrations.

To assess whether this system is justified, we must ask an important,
albeit uncomfortable, question: Is the potentially avoided IQ loss worth
the investment of more than $3 million over a five-year period? Someone
might choose to be morally indignant at the very idea of even asking such
a question, much less answering it. You might think that any IQ point for
any number of children is worth the investment.

But wait. The EPA also had to consider investments in other systems that
track effects of new pollutants that sometimes result in premature death. The
EPA has limited resources, and there are a large number of initiatives it could
invest in that might improve public health, save endangered species, and
improve the overall environment. It has to compare initiatives by asking
“How many children and how many IQ points?” as well as “How many
premature deaths?”

Sometimes we even have to ask “How premature is the death?” Should
the death of a very old person be considered equal to that of a younger
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person, when limited resources force us to make choices? At one point, the
EPA considered using what it called a “senior death discount.” A death of a
person over 70 was valued about 38% less than a person under 70. Some
people were indignant with this and, in 2003, the controversy caused then
EPA administrator Christine Todd Whitman to announce that this discount
was used for “guidance,” not policy making, and that it was discontinued.’
Of course, even saying they are the same is itself a measurement of how we
express our values quantitatively. But if they are the same, I wonder how
far we can take that equivalency. Should a 99-year-old with several health
problems be worth the same effort to save as a 5-year-old? Whatever your
answer is, it is a measurement of the relative value you hold for each.

If we insist on being ignorant of the relative values of various public
welfare programs (which is the necessary result of a refusal to measure
their value), then we will almost certainly allocate limited resources in a
way that solves less valuable problems for more money. This is because
there is a large combination of possible investments to address these
issues and the best answer, in such cases, is never obvious without some
understanding of magnitudes.

In other cases, it seems the very existence of any error at all (which,
we know, is almost always the case in empirical measurements) makes an
attempted measure morally outrageous to some. Stephen J. Gould, author
of The Mismeasure of Man, has vehemently argued against the usefulness,
or even morality, of measurements of the intellect using 1Q or “g” (the
general factor or intelligence that is supposed to underlie IQ scores). He
said: “‘g’ is nothing more than an artifact of the mathematical procedure
used to calculate it.”® Although IQ scores and g surely have various errors
and biases, they are, of course, not just mathematical procedures but are
based on observations (scores on tests). And since we now understand
that measurement does not mean “total lack of error,” the objection that
intelligence can’t be measured because tests have error is toothless.

Furthermore, other researchers point out that the view that measures
of intelligence are not measures of any real phenomenon is inconsistent
with the fact that these different “mathematical procedures” are highly
correlated with each other” and even correlated with social phenomena
like criminal behavior or income.® How can IQ be a purely arbitrary figure
if it correlates with observed reality? T won't attempt to resolve that dispute
here, but I am curious about how Gould would address certain issues
like the environmental effects of a toxic substance that affects mental
development. Since one of the most ghastly effects of methyl mercury on
children, for example, is potential IQ points lost, is Gould saying no such
effect can be real, or is he saying that even if it were real, we dare not
measure it because of errors among the subjects? Either way, we would
have to end up ignoring the potential health costs of this toxic substance



The lllusion of Intangibles: Why Immeasurables Aren’t 41

and we might be forced—lacking information to the contrary—to reserve
funds for another program. Too bad for the kids.

The fact is that the preference for ignorance over even marginal reduc-
tions in ignorance is never the moral high ground. If decisions are made
under a self-imposed state of higher uncertainty, policy makers (or even
businesses like, say, airplane manufacturers) are betting on our lives with a
higher chance of erroneous allocation of limited resources. In measurement,
as in many other human endeavors, ignorance is not only wasteful but can
be dangerous.

Ignorance is never better than knowledge.
—Enrico Fermi, winner of the 1938 Nobel Prize for Physics

Toward a Universal Approach to Measurement

So far, we've discussed three people with interesting and intuitive ap-
proaches to measurement. We've also learned how to address the basic
objections to measurement and described a few interesting measurement
examples. We find that the reasons why something can’t or shouldn’t be
measured are each actually mere misconceptions (except for the economic
objection, in some cases). In different ways, all of these lessons combine to
paint some of the edges of a general framework for measurement.

Even with all the different types of measurements there are to make, we
can still construct a set of steps that apply to virtually any type of measure-
ment. At the end of Chapter 1, I proposed a decision-oriented framework
that T will argue applies universally to any measurement problem. This
framework can form the basis of a specific procedure. Every component of
this procedure is well known to some particular field of research or industry,
but no one routinely puts them together into a coherent method. We’ll need
to add a few more concepts to make it complete. This framework also hap-
pens to be the basis of the method I call Applied Information Economics. I
summarize this as the following five-step process and explain how each of
these steps ties to the remaining chapters of the book:

1. Define a decision problem and the relevant uncertainties. If people ask
“How do we measure X?” they may already be putting the cart before
the horse. The first question is “What is your dilemma?” Then we can
define all of the variables relevant to the dilemma and determine what
we really mean by ambiguous ideas like “training quality” or “economic
opportunity.” (Chapter 4)

2. Determine what you know now. We need to quantify your uncertainty
about unknown quantities in the identified decision. This is done by
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learning how to describe your uncertainty in terms of ranges and prob-
abilities. (This is a teachable skill.) Defining the relevant decision and
how much uncertainty we have about it helps us determine the risk
involved. (Chapters 5 and 6)

. Compute the value of additional information. Information has value

because it reduces risk in decisions. Knowing the “information value”
of a measurement allows us to identify what to measure as well as
inform, us about how to measure it. (Chapter 7)

If there are no variables with information values that justify the cost
of any measurement approaches, skip to step 5.

4. Apply the relevant measurement instrument(s) to high-value measure-

ments. We will cover some of the basic instruments, such as random
sampling, controlled experiments, and some more obscure variations on
these. We will also talk about methods that allow us to squeeze more
out of limited data, how to isolate the effects of one variable, how to
quantify “soft” preferences, how new technologies can be exploited for
measurement, and how to make better use of human experts. (Chapters
910 13)
Repeat step 3.

5. Make a decision and act on it. When the economically justifiable amount

of uncertainty has been removed, decision makers face a risk-versus-
return decision. Any remaining uncertainty is part of this choice. To
optimize this decision, the risk aversion of the decision maker can be
quantified. An optimum choice can be calculated even in situations
where there are enormous combinations of possible strategies. We will
build on these methods further with a discussion about quantifying risk
aversion and other preferences and attitudes of decision makers. This
and all of the previous steps are combined into practical project steps.
(Chapters 11, 12, and 14)

Return to step 1 and repeat. Tracking and reacting to the results
of each decision implies a new chain of decisions. (e.g., whether inter-
vention is required if results are unsatisfactory, new business conditions
may require changing the objective, etc.)

My hope is that as we raise the curtain on each of these steps in the

upcoming chapters, the reader may have a series of small revelations about
measurement. Viewing the world through “calibrated” eyes that see ev-
erything in a quantitative light has been a historical force propelling both
science and economic productivity. Humans possess a basic instinct to mea-
sure, yet this instinct is suppressed in an environment that emphasizes
committees and consensus over making basic observations. It simply won’t
occur to many managers that an “intangible” can be measured with simple,
cleverly designed observations.
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We have all been taught several misconceptions about measurement
and what it means from our earliest exposure to the concept. We may have
been exposed to basic concepts of measurement in, say, a chemistry lab in
high school, but it’s unlikely we learned much besides the idea that mea-
surements are exact and apply only to the obviously and directly observable
quantities. College statistics, however, probably helps to confuse as many
people as it informs. When we go on to the workplace, professionals at all
levels in all fields are inundated with problems that don’t have the neatly
measurable factors we saw in high school and college problems. We learn,
instead, that some things are simply beyond measurement. However, as we
saw, “intangibles” are a myth. The measurement dilemma can be solved.
The “how much?” question frames any issue in a valuable way, and even
the most controversial issues of measurement in business, government, or
private life can be addressed when the consequences of not measuring are
understood.
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Before You Measure






CHAPTER 4

Clarifying the
Measurement Problem

( :onfronted with apparently difficult measurements, it helps to put the
proposed measurement in context. Prior to making a measurement, we
need to answer the following:

1. What is the decision this measurement is supposed to support?

2. What is the definition of the thing being measured in terms of observable
consequences?

3. How, exactly, does this thing matter to the decision being asked?

4. How much do you know about it now (i.e., what is your current level
of uncertainty)?

5. What is the value of additional information?

In this chapter, we will focus on the first three questions. Once we have
answered the first three questions, we can determine what we know now
about the uncertain quantity, the amount of risk due to that uncertainty, and
the value of reducing that uncertainty further. That covers the next three
chapters. In the Applied Information Economics (AIE) method I have been
using, these are the first questions I ask with respect to anything I am asked
to measure. The AIE approach has been applied in over 60 major decision
and measurement problems in a range of organizations. The answers to
these questions often completely change not just how organizations should
measure something but what they should measure.

The first three questions define what this measurement means within
the framework of what decisions depend on it. If a measurement matters
at all, it is because it must have some conceivable effect on decisions and
behavior. If we can’t identify a decision that could be affected by a pro-
posed measurement and how it could change those decisions, then the
measurement simply has no value.

47
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For example, if you wanted to measure “product quality,” it becomes
relevant to ask what could be affected by it and to ask the more general
question of what “product quality” means. Are you using the information
to decide on whether to change an ongoing manufacturing process? If so,
how bad does quality have to be before you make changes to the process?
Are you measuring product quality to compute management bonuses in a
quality program? If so, what’s the formula? All this, of course, depends on
you knowing exactly what you mean by “quality” in the first place.

When I was with Management Consulting Services in what was then the
Big 8 Coopers & Lybrand in the late 1980s, I was on a consulting engage-
ment with a small regional bank that was wondering how to streamline its
reporting processes. The bank had been using a microfilm-based system to
store the 60+ reports it got from branches every week, most of which were
elective, not required for regulatory purposes. These reports were gener-
ated because someone in management—at some point in time—thought
they needed to know the information. These days, a good Oracle program-
mer might argue that it would be fairly easy to create and manage these
queries; at the time, however, keeping up with these requests for reports
was beginning to be a major burden. When I asked bank managers what
decisions these reports supported, they could identify only a few cases
where the elective reports had, or ever could, change a decision. Perhaps
not surprisingly, the same reports that could not be tied to real manage-
ment decisions were rarely even read. Even though someone initially had
requested each of these reports, the original need was apparently forgot-
ten. Once the managers realized that many reports simply had no bearing
on decisions, they understood that those reports must, therefore, have no
value.

Years later, a similar question was posed by staff of the Office of the
Secretary of Defense. They wondered what the value was of a large number
of weekly and monthly reports. When I asked if they could identify a single
decision that each report could conceivably affect, they found quite a few
that had no effect on any decision. Likewise, the information value of those
reports was zero.

Once we have defined our terms and how decisions are impacted, we
still have two more questions. How much do you know about this now and
what is it worth to measure? You have to know what it is worth to measure
because you would probably come up with a very different measurement
for quality if measuring it is worth $10 million per year than if it is worth
$10,000 per year. And we can’t compute the value until we know how much
we know now.

In the chapters that follow, we will discuss some examples regarding
how to answer these questions. While exploring these “premeasurement”
issues, we will show how the answers to some of these questions about
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uncertainty, risk, and the value of information are useful measurements in
their own right.

Getting the Language Right:
What “Uncertainty” and “Risk” Really Mean

As discussed, in order to measure something, it helps to figure out exactly
what we are talking about and why we care about it. Information technology
(IT) security is a good example of a problem that any modern business can
relate to and needs a lot of clarification before it can be measured (but
the same basic principles apply to any other use of the terms risk and
uncertainty). To measure IT security, we would need to ask such questions
as “What do we mean by ‘security’”?” and “What decisions depend on my
measurement of security?”

To most people, an increase in security should ultimately mean more
than just, for example, who has attended security training or how many
desktop computers have new security software installed. If security is better,
then some risks should decrease. If that is the case, then we also need to
know what we mean by “risk.” Actually, that’s the reason I'm starting with
an IT security example. Clarifying this problem requires that we jointly
clarify “uncertainty” and “risk.” Not only are they measurable, they are key
to understanding measurement in general.

Even though “risk” and “uncertainty” frequently are dismissed as im-
measurable, a thriving industry depends on measuring both and does so
routinely. One of the industries I've consulted with the most is insurance. I
remember once conducting a business-case analysis for a director of IT in
a Chicago-based insurance company. He said, “Doug, the problem with IT
is that it is risky, and there’s no way to measure risk.” I replied, “But you
work for an insurance company. You have an entire floor in this building
for actuaries. What do you think they do all day?” His expression was one of
having an epiphany. He had suddenly realized the incongruity of declaring
risk to be immeasurable while working for a company that measures risks
of insured events on a daily basis.

The meaning of “uncertainty” and “risk” and the distinction between
them seems ambiguous even for some experts in the field. Consider this
quotation from Frank Knight, a University of Chicago economist in the early
1920s:

Uncertainty must be taken in a sense radically distinct from the familiar
notion of Risk, from which it has never been properly separated. . ..
The essential fact is that “risk” means in some cases a quantity susceptible
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of measurement, while at other times it is something distinctly not of this
character; and there are far-reaching and crucial differences in the
bearings of the phenomena depending on which of the two is really
present and operating.'

This is precisely why it is important to understand what decisions we
need to support when defining our terms. Knight is speaking of the incon-
sistent and ambiguous use of “risk” and “uncertainty” by some unidentified
groups of people. However, that doesn’t mean we need to be ambiguous
or inconsistent. (Knight offers a definition that, I think, confuses the issue
even more.) In fact, in the decision sciences, these terms are described fairly
regularly in a way that is unambiguous and consistent. Regardless of how
some might use the terms, we can choose to define them in a way that is
relevant to the decisions we have to make.

Definitions for Uncertainty and Risk,
and Their Measurements

Uncertainty: The lack of complete certainty, that is, the exis-
tence of more than one possibility. The “true” outcome/state/
result/value is not known.

Measurement of Uncertainty: A set of probabilities assigned to
a set of possibilities. For example: “There is a 60% chance this
market will more than double in five years, a 30% chance it
will grow at a slower rate, and a 10% chance the market will
shrink in the same period.”

Risk: A state of uncertainty where some of the possibilities involve
a loss, catastrophe, or other undesirable outcome.

Measurement of Risk: A set of possibilities each with quantified
probabilities and quantified losses. For example: “We believe
there is a 40% chance the proposed oil well will be dry with a
loss of $12 million in exploratory drilling costs.”

We will get to how we assign these probabilities a little later, but at
least we have defined what we mean—which is always a prerequisite to
measurement. We chose these definitions because they are the most relevant
to how we measure the example we are using here: security and the value
of security. But, as we will see, these definitions also are the most useful
when discussing any other type of measurement problem we have.
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Whether others will continue to use ambiguous terms and have endless
philosophical debates is of little concern to a decision maker faced with an
immediate dilemma. The word “force,” for example, was used in the English
language for centuries before Sir Isaac Newton defined it mathematically.
Today it is sometimes used interchangeably with terms like “energy” or
“power”—but not by physicists and engineers. When aircraft designers use
the term, they know precisely what they mean in a quantitative sense (and
those of us who fly frequently appreciate their effort at clarity).

Now that we have defined “uncertainty” and “risk,” we have a bet-
ter tool box for defining terms like “security” (or “safety,” “reliability,” and
“quality,” but more on that later). When we say that security has improved,
we generally mean that particular risks have decreased. If I apply the defini-
tion of risk given earlier, a reduction in risk must mean that the probability
and/or severity (loss) decreases for a particular list of events. That is the ap-
proach I briefly mentioned earlier to help measure one very large IT security
investment—the $100 million overhaul of IT security for the Department of
Veterans Affairs.

Examples of Clarification: Lessons for Business from, of All
Places, Government

Many government employees imagine the commercial world as an almost
mythical place of incentive-driven efficiency and motivation where fear
of going out of business keeps everyone on their toes (but perhaps not
so much after the 2008 financial crisis). I often hear government workers
lament that they are not as efficient as a business. To those in the business
world, however, the government (federal, state, or other) is a synonym
for bureaucratic inefficiency and unmotivated workers counting the days to
retirement. I've done a lot of consulting in both worlds, and I would say that
neither generalization is entirely true. Many people on each side would be
surprised to learn that I think there are many things the commercial world
can learn from (at least some) government agencies. The fact is that large
businesses with vast internal structures still have workers so far removed
from the economic realities of business that their jobs are as bureaucratic as
any job in government. And I'm here to bear witness to the fact that the U.S.
federal government, while certainly the largest bureaucracy in history, has
many motivated and passionately dedicated workers. In that light, I will use
a few examples from my government clients as great examples for business
to follow.

Here is a little more background on the IT security measurement project
for Veterans Affairs, which I briefly mentioned in the last chapter. In 2000,
an organization called the Federal CIO Council wanted to conduct some
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sort of test to compare different performance measurement methods. As
the name implies, the Federal CIO Council is an organization consisting of
the chief information officers of federal agencies and many of their direct
reports. The council has its own budget and sometimes sponsors research
that can benefit all federal CIOs. After reviewing several approaches, the
CIO Council decided it should test Applied Information Economics.

The CIO Council decided it would test AIE on the massive, newly pro-
posed IT security portfolio at the Department of Veterans Affairs (VA). My
task was to identify performance metrics for each of the security-related
systems being proposed and to evaluate the portfolio, under the close su-
pervision of the council. Whenever I had a workshop or presentation of
findings, several council observers from a variety of agencies, such as the
Department of Treasury, the FBI, or Housing and Urban Development,
were often in attendance. At the end of each workshop, they compiled their
notes and wrote a detailed comparison of AIE to another popular method
currently used in other agencies.

The first question I asked the VA is similar to the first questions I ask
on most measurement problems: “What problem are you trying to solve
with this measurement?” and “What do you mean by ‘IT security’?” In other
words, why does this measurement matter to you? What does improved IT
security look like? What would we see or detect that would be different
if security were better or worse? Furthermore, what do we mean by the
“value” of security? The answer to the first question was, in this case, fairly
straightforward. The VA had an upcoming investment decision about seven
proposed IT security projects that total about $130 million over five years.
(Exhibit 4.1 lists the seven proposed investments.) The reason for these
measurements was to determine which if any of the proposed investments
were justified and, after they were implemented, whether improvements in
security justified further investment or some other intervention (e.g., changes
to the systems or an addition of new systems).

The next question became a bit more difficult for my client. IT security
might not seem like the most ephemeral or vague concept we need to
measure, but project participants soon found that they didn’t guite know
what they meant by that term.

It was clear, for example, that reduced frequency and impact of “pan-
demic” virus attacks is an improvement in security, but what is “pandemic”
or, for that matter, “impact” Also, it might be clear that an unauthorized
access to a system by a hacker is an example of a breach of IT security, but
is a theft of a laptop? How about a data center being hit by a fire, flood, or
tornado? At the first meeting, participants found that while they all thought
IT security could be better, they didn’t have a common understanding of
exactly what IT security was.
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EXHIBIT 4.1 IT Security for the Department of Veterans Affairs

Events Averted or

Security Systems Reduced Costs Averted
Public Key Infrastructure (key Pandemic virus attacks Productivity losses

encryption/decryption etc.) Unauthorized system Fraud losses
Biometric/single sign-on access: external Legal liability/

(fingerprint readers, security (hackers) or improper

card readers, etc.) internal (employees) disclosure
Intrusion-detection systems Unauthorized physical Interference with
Security-compliance access to facilities or mission (for the

certification program for property VA, this mission

new systems Other disasters: fire, is the care of
New antivirus software flood, tornado, etc. veterans)
Security incident reporting

system

Additional security training

It wasn’t that different parties had already developed detailed mental
pictures of IT security and that each person had a different picture in mind.
Up to that point, nobody had thought about those details in the definition of
IT security. Once group members were confronted with specific, concrete
examples of IT security, they came to agreement on a very unambiguous
and comprehensive model of what it is.

They resolved that improved IT security means a reduction in the fre-
quency and severity of a specific list of undesirable events. In the case of
the VA, they decided these events should specifically include virus attacks,
unauthorized access (logical and physical), and certain types of other dis-
asters (e.g., losing a data center to a fire or hurricane). Each of these types
of events entails certain types of cost. Exhibit 4.1 presents the proposed
systems, the events they meant to avert, and the costs of those events.

Each of the proposed systems reduced the frequency or impact of spe-
cific events. Each of those events would have resulted in a specific com-
bination of costs. A virus attack, for example, tends to have an impact on
productivity, while unauthorized access might result in productivity loss,
fraud, and perhaps even legal liability resulting from improper disclosure of
private medical data and the like.

With these definitions, we have a much more specific understanding of
what “improved IT security” really means and, therefore, of how to measure
it. When I ask the question “What are you observing when you observe
improved IT security?” VA management can now answer specifically.
The VA participants realized that when they observe “better security,” they



54 Before You Measure

are observing a reduction in the frequency and impact of these detailed
events. They achieved the first milestone to measurement.

You might take issue with some aspects of the definition. You may
(justifiably) argue that a fire is not, strictly speaking, an IT security risk.
Yet the VA participants determined that, within their organization, they did
mean to include the risk of fire. Aside from some minor differences about
what to include on the periphery, I think what we developed is the basic
model for any IT security measurements.

The VA’s previous approach to measuring security was very different.
They had focused on counting the number of people who completed cer-
tain security training courses and the number of desktops that had certain
systems installed. In other words, the VA wasn’t measuring results at all.
All previous measurement effort focused on what was considered easy to
measure. Prior to my work with the CIO Council, some people considered
the ultimate impact of security to be immeasurable, so no attempt was made
to achieve even marginally less uncertainty.

With the parameters we developed, we were set to measure some
very specific things. We built a spreadsheet model that included all of
these effects. This was really just another example of asking a few “Fermi”
questions. For virus attacks, we asked:

How often does the average pandemic (agency-wide) virus attack
occur?

When such an attack occurs, how many people are affected?

For the affected population, how much did their productivity decrease
relative to normal levels?

What is the duration of the downtime?

What is the cost of labor lost during the productivity loss?

If we knew the answer to each of these questions, we could compute
the cost of agency-wide virus attacks as:

Average Annual Cost = Number of attacks
of Virus Attacks ~ x Average number of people affected
x Average productivity loss
x Average duration of downtime (hours)
x Annual cost of labor
-+ 2080 hours per year (The number of hours
is a government standard.?)

Of course, this calculation considers only the cost of the equivalent
labor that would have been available if the virus attack had not occurred.
It does not tell us how the virus attack affected the care of veterans or
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EXHIBIT 4.2 Department of Veterans Affairs Estimates for the Effects of Virus
Attacks

The value is 90% likely to fall
between or be equal to these

Uncertain Variable points:

Agency-wide virus attacks per year (for the next 2 4
5 years)

Average number of people affected 25,000 65,000

Percentage productivity loss 15% 60%

Average duration of productivity loss 4 hours 12 hours

Loaded annual cost per person (most affected $ 50,000 $ 100,000

staff would be in the lower pay scales)

other losses. Nevertheless, even if this calculation excludes some losses, at
least it gives us a conservative lower bound of losses. Exhibit 4.2 shows the
answers for each of these questions.

These ranges reflect the uncertainty of security experts who have had
previous experience with virus attacks at the VA. With these ranges, the
experts are saying that there is a 90% chance that the true values will fall
between the upper and lower bounds given. I trained these experts so that
they were very good at assessing uncertainty quantitatively. In effect, they
were “calibrated” like any scientific instrument to be able to do this.

These ranges may seem merely subjective, but the subjective estimates
of some persons are demonstrably—measurably—better than those of oth-
ers. We were able to treat these ranges as valid because we knew the experts
had demonstrated, in a series of tests, that when they said they were 90%
certain, they would be right 90% of the time.

So far, you have seen how to take an ambiguous term like “security”
and break it down into some relevant, observable components. By defin-
ing what “security” means, the VA made a big step toward measuring it.
By this point, the VA had not yet made any observations to reduce its un-
certainty. All it did was quantify its uncertainty by using probabilities and
ranges.

So, how did the security experts determine ranges in which they could
be “90% certain?” It turns out that the ability of a person to assess odds
can be calibrated—just like any scientific instrument is calibrated to ensure
it gives proper readings. Calibrated probability assessments are the key to
measuring your current state of uncertainty about anything. Learning how
to quantify your current uncertainty about any unknown quantity is an
important step in determining how to measure something in a way that is
relevant to your needs. Developing this skill is the focus of the next chapter.
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Notes

1. Frank Knight, Risk, Uncertainty and Profit (New York: Houghton Mifflin, 1921),
pp. 19-20.

2. 2080 hours per year is an Office of Management and Budget and Government
Accountability Office standard for converting loaded annual salaries to equivalent
hourly rates.



CHAPTER

Calibrated Estimates:
How Much Do You Know Now?

The most important questions of life are indeed, for the most part, really
only problems of probability.
—Pierre Simon Laplace, Théorie Analytique des Probabilités, 1812

How many hours per week do employees spend addressing customer
complaints? How much would sales increase with a new advertising
campaign? Even if you don’t know the exact values to questions like these,
you still know something. You know that some values would be impossible
or at least highly unlikely. Knowing what you know now about something
actually has an important and often surprising impact on how you should
measure it or even whether you should measure it. What we need is a way
to express how much we know now, however little that may be. To do that,
we need a way to know if we are any good at expressing uncertainty.

One method to express our uncertainty about a number is to think of
it as a range of probable values. In statistics, a range that has a particular
chance of containing the correct answer is called a “confidence interval”
(CD. A 90% CI is a range that has a 90% chance of containing the correct
answer. For example, you can’t know for certain exactly how many of your
current prospects will turn into customers in the next quarter, but you think
that probably no less than three prospects and probably no more than seven
prospects will sign contracts. If you are 90% sure the actual number will fall
between three and seven, then we can say you have a 90% CI of three to
seven. You may have computed these values with all sorts of sophisticated
statistical inference methods, but you might just have picked them out based
on your experience. Either way, the values should be a reflection of your
uncertainty about this quantity. (See “A Purely Philosophical Interlude” on
page 69 for a caveat on this use of terms.)
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You can also use probabilities to describe your uncertainty about spe-
cific future events, such as whether a given prospect will sign a contract
in the next month. You can say that there is a 70% chance that this will
occur, but is that “right”? One way we can determine if a person is good at
quantifying uncertainty is to look at all the prospects the person assessed
and ask, “Of the large number of prospects she was 70% certain about clos-
ing, did about 70% actually close? Where she said she was 80% confident
in closing a deal, did about 80% of them close?” And so on. This is how
we know how good we are at subjective probabilities. We compare our
expected outcomes to actual outcomes.

Unfortunately, extensive studies have shown that very few people are
naturally calibrated estimators. Calibrated probability assessments were an
area of research in decision psychology in the 1970s and 1980s and up to
very recently. Leading researchers in this area have been Daniel Kahne-
man, winner of the 2002 Nobel Prize in Economics, and his colleague Amos
Tversky.! Decision psychology concerns itself with how people actually
make decisions, however irrational, in contrast to many of the “management
science” or “quantitative analysis” methods taught in business schools, which
focus on how to work out “optimal” decisions in specific, well-defined prob-
lems. This research shows that almost everyone tends to be biased either
toward “overconfidence” or “underconfidence” about our estimates; the vast
majority of those are overconfident (see inset, “Two Extremes of Subjective
Confidence”). Putting odds on uncertain events or ranges on uncertain quan-
tities is not a skill that arises automatically from experience and intuition.

Two Extremes of Subjective Confidence

Overconfidence: When an individual routinely overstates knowl-
edge and is correct less often than he or she expects. For ex-
ample, when asked to make estimates with a 90% confidence
interval, many fewer than 90% of the true answers fall within
the estimated ranges.

Underconfidence: When an individual routinely understates
knowledge and is correct much more often than he or she
expects. For example, when asked to make estimates with a
90% confidence interval, many more than 90% of the true an-
swers fall within the estimated ranges.

Fortunately, some of the work by other researchers shows that better
estimates are attainable when estimators have been trained to remove their
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personal estimating biases.? Researchers discovered that odds makers and
bookies were generally better at assessing the odds of events than, say,
executives. They also made some disturbing discoveries about how bad
physicians are at putting odds on unknowns like the chance of a malignant
tumor or the chance a chest pain is a heart attack. They reasoned that this
variance among different professions shows that putting odds on uncertain
things must be a learned skill.

Researchers learned how experts can measure whether they are sys-
tematically underconfident, overconfident, or have other biases about their
estimates. Once people conduct this self-assessment, they can learn sev-
eral techniques for improving estimates and measuring the improvement.
In short, researchers discovered that assessing uncertainty is a general skill
that can be taught with a measurable improvement. That is, when calibrated
sales managers say they are 75% confident that a major customer will be
retained, there really is a 75% chance you will retain the customer.

Calibration Exercise

Let’s benchmark how good you are at quantifying your own uncertainty by
taking a short quiz. Exhibit 5.1 contains 10 90% CI questions and 10 binary
(i.e., true/false) questions. Unless you are a Jeopardy grand champion, you
probably will not know all of these general knowledge questions with cer-
tainty (although some are very simple). But they are all questions you proba-
bly have some idea about. These are similar to the exercises I give attendees
in my workshops and seminars. The only difference is that the tests I give
have more questions of each type, and I present several tests with feedback
after each test. This calibration training generally takes about half a day.

But even with this small sample, we will be able to detect some impor-
tant aspects of your skills. More important, the exercise should get you to
think about the fact that your current state of uncertainty is itself something
you can quantify.

Instructions: Exhibit 5.1 contains 10 of each of these two types of
questions.

1. 90% Confidence Interval (CI). For each of the 90% CI questions,
provide both an upper bound and a lower bound. Remember that the
range should be wide enough that you believe there is a 90% chance
that the answer will be between your bounds.

2. Binary Questions. Answer whether each of the statements is “true” or
“false,” then circle the probability that reflects how confident you are in
your answer. For example, if you are absolutely certain in your answer,



60 Before You Measure

you should say you have a 100% chance of getting the answer right. If
you have no idea whatsoever, then your chance should be the same as
a coin flip (50%). Otherwise (probably usually), it is one of the values
between 50% and 100%.

Of course, you could just look up the answers to any of these questions,
but we are using this as an exercise to see how well you estimate things
you can’t just look up (e.g., next month’s sales or the actual productivity
improvement from a new information technology [IT] system).

Important hint: The questions vary in difficulty. Some will seem easy
while others may seem too difficult to answer. But no matter how difficult
the question seems, you still know something about it. Focus on what you
do know. For the range questions, you know of some bounds beyond which
the answer would seem absurd (e.g., you probably know Newton wasn’t
alive in ancient Greece or in the twentieth century). Similarly, for the binary
questions, even though you aren’t certain, you have some opinion, at least,
about which answer is more likely.

After you've finished, but before you look up the answers, try a small
experiment to test if the ranges you gave really reflect your 90% CI. Consider
one of the 90% CI questions, let’s say the one about when Newton published
the Universal Laws of Gravitation. Suppose I offered you a chance to win
$1,000 in one of these two ways:

1. You win $1,000 if the true year of publication of Newton’s book turns
out to be between the dates you gave for the upper and lower bound.
If not, you win nothing.

2. You spin a dial divided into two unequal “pie slices,” one comprising
90% of the dial and the other just 10%. If the dial lands on the large
slice, you win $1,000. If it lands on the small slice, you win nothing
(i.e., there is a 90% chance you win $1,000). (See Exhibit 5.2.)

Which do you prefer? The dial has a stated chance of 90% that you
win $1,000, a 10% chance you win nothing. If you are like most people
(about 80%), you prefer to spin the dial. But why would that be? The only
explanation is that you think the dial has a higher chance of a payoff. The
conclusion we have to draw is that the 90% CI you first estimated is really not
your 90% CI. It might be your 50%, 65%, or 80% CI, but it can’t be your 90%
CI. We say, then, that your initial estimate was probably overconfident. You
express your uncertainty in a way that indicates you have less uncertainty
than you really have.

An equally undesirable outcome is to prefer option A, where you win
$1,000 if the correct answer is within your range. This means that you think
there is more than a 90% chance your range contains the answer, even
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EXHIBIT 5.2 Spin to Win!

though you are representing yourself as being merely 90% confident in
the range. In other words, this is usually the choice of the underconfident
person.

The only desirable answer you can give is if you set your range just
right so that you would be indifferent between options A and B. This means
that you believe you have a 90% chance—not more and not less—that the
answer is within your range. For an overconfident person (i.e., most of
us), making these two choices equivalent means increasing the width of
the range until options A and B are considered equally valuable. For the
underconfident person, the range should be narrower than first estimated.

You can apply the same test, of course, to the binary questions. Let’s
say you were 80% confident about your answer to the question about
Napoleon’s birthplace. Again, you give yourself a choice between betting
on your answer being correct or spinning the dial. In this case, however,
the dial pays off 80% of the time. If you prefer to spin the dial, you are
probably less than 80% confident in your answer. Now let’s suppose we
change the payoff odds on the dial to 70%. If you then consider spinning
the dial just as good (no better or worse) as betting on your answer, then
you should say that you are really about 70% confident that your answer to
the question is correct.

In my calibration training classes, I've been calling this the “equivalent
bet test.” (Some examples in the decision psychology literature refer to this
as an “equivalent urn” involving drawing random lots from an urn.) As the
name implies, it tests to see whether you are really 90% confident in a
range by comparing it to a bet which you should consider to be equiva-
lent. Research indicates that even just pretending to bet money significantly
improves a person’s ability to assess odds.? In fact, actually betting money
turns out to be only slightly better than pretending to bet. (More on this in
the Chapter 13 discussion about prediction markets.)

Methods like the equivalent bet test help estimators give more realistic
assessments of their uncertainty. People who are very good at assessing
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their uncertainty (i.e., they are right 80% of the time they say they are 80%
confident, etc.) are called “calibrated.” There are a few other simple methods
for improving your calibration, but first, let’s see how you did on the test.
The answers are in the appendix.

To see how calibrated you are, we need to compare your expected
results to your actual results. Since the range questions you answered
were asking for a 90% CI, you are, in effect, saying that you expect 9
out of 10 of the true answers to be within your ranges. We need only
to compare how many answers were actually within your stated ranges
to your expected number, 9. If expectations closely match outcomes, then
you may be well calibrated. (This very small sample is not, of course,
conclusive.)

The expected outcome for your answers to the true/false questions,
however, is not a fixed number since your confidence could be different for
each answer. For each of the answers, you said you were between 50% and
100% confident. If you said you were 100% confident on all 10 questions,
you are expecting to get all 10 correct. If you were only 50% confident on
each question (i.e., thought your odds were no better than a coin flip), you
expected to get about half of them right. To compute the expected outcome,
convert each of the percentages you circled to a decimal (i.e., .5, .6...1.0)
and add them up. Let’s say your confidence in your answers was 1, .5, .9, .0,
7,.8,.8,1,.9, and .7, totaling to 7.9. This means your “expected” number
correct was 7.9.

If you are like most people, the number of questions you answered
correctly was less than the number you expected to answer correctly. This
is a very small number of questions to measure your skill at assessing
your uncertainty, but most people are so overconfident that even this small
number can be illuminating.

One way to frame the performance on a test like this is to determine
how likely it would be for a person who really was calibrated (i.e., each 90%
CI really had a 90% chance of containing the real value) to get the observed
result. A calculation would show that for such a calibrated person, there
is only a 1 in 612 chance that he or she would be so unlucky as to get
only 5 or fewer out of 10 of the 90% CIs to contain the real answers.
(See www.howtomeasureanything.com for a spreadsheet example of this
calculation.) But since over half of those who take these tests perform that
badly (56%), we can safely conclude that it is systemic overconfidence and
not a rash of bad luck combined with a small sample size. It is not just that
these questions were too difficult since these results reflect findings from
a variety of tests with different questions over the past several years. Even
with this small sample, if you got fewer than 7 answers within your bounds,
you are probably overconfident; if you got fewer than 5 within your bounds,
you are very overconfident.
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People tend to fare slightly better on the true/false tests, but, on average,
they still tend to be overconfident—and overconfident by enough that even
a small sample of 10 can usually detect it. On average, people expect to
get 74% of true/false questions like these correct but, in reality, answer just
62% of them correct. Nearly one-third of the participants expected to get
80% to 100% correct on 10-question true/false tests like this; of those, they
correctly answered only 64% of the questions. Part of the reason you may
have performed better on the true/false test is because, statistically, this test
is less precise. (It is easier for a calibrated person to be unlucky and for an
uncalibrated person to appear calibrated in this small sample of questions.)
But if your actual number correct was 2.5 or more lower than the expected
correct number, you are still probably overconfident.

Further Improvements on Calibration

The academic research so far indicates that training has a significant effect on
calibration. We already mentioned the equivalent bet test, which allows us to
pretend we are tying personal consequences to the outcomes. Research (and
my experience) proves that another key method in calibrating a person’s
ability to assess uncertainty is repetition and feedback. To test this, we ask
participants a series of trivia questions similar to the quiz you just took.
They give me their answers, then I show them the true values, and they test
again.

However, it doesn’t appear that any single method completely corrects
for the natural overconfidence most people have. To remedy this, I com-
bined several methods and found that most people could be nearly perfectly
calibrated.

Another one of these methods involves asking people to identify pros
and cons for the validity of each of their estimates. A pro is a reason why
the estimate is reasonable; a con is a reason why it might be overconfident.
For example, your estimate of sales for a new product may be in line with
sales for other start-up products with similar advertising expenditures. But
when you think about your uncertainty regarding catastrophic failures or
runaway successes in other companies as well as your uncertainty about
the overall growth in the market, you may reassess the initial range. Aca-
demic researchers found that this method by itself significantly improves
calibration.*

I also asked experts who are providing range estimates to look at each
bound on the range as a separate “binary” question. A 90% CI interval
means there is a 5% chance the true value could be greater than the upper
bound and a 5% chance it could be less than the lower bound. This means
that estimators must be 95% sure that the true value is less than the upper
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bound. If they are not that certain, they should increase the upper bound
until they are 95% certain. A similar test is applied to the lower bound. Per-
forming this test seems to avoid the problem of “anchoring” by estimators.
Researchers discovered that once we have a number stuck in our head,
our other estimates tend to gravitate toward it. (More on this to come in
Chapter 12.) Some estimators say that when they provide ranges, they think
of a single number and then add or subtract an “error” to generate their
range. This might seem reasonable, but it actually tends to cause estimators
to produce overconfident ranges (i.e., ranges that are too narrow). Looking
at each bound alone as a separate binary question of “Are you 95% sure it
is over/under this amount?” cures our tendency to anchor.

You can also force your natural anchoring tendency to work the other
way. Instead of starting with a point estimate and then making it into a
range, start with an absurdly wide range and then start eliminating the
values you know to be extremely unlikely. If you have no idea how much a
new plastic injection molding factory will cost, start with a range of $1,000
to $10 billion and start making it narrower. The new equipment alone will
cost $12 million, so you raise the lower bound. A figure of $1 billion is more
than all of the other factories you have combined, so you can lower the
upper bound. And keep narrowing it from there as you eliminate absurd
values.

I sometimes call this the “absurdity test.” It reframes the question from
“What do I think this value could be?” to “What values do I know to be
ridiculous?” We look for answers that are obviously absurd and then elim-
inate them until we get to answers that are still unlikely but not entirely
implausible. This is the edge of our knowledge about that quantity.

After a few calibration tests and practice with methods like listing pros
and cons, using the equivalent bet, and anti-anchoring, estimators learn to
fine-tune their “probability senses.” Most people get nearly perfectly cali-
brated after just a half-day of training. Most important, even though subjects
may have been training on general trivia, the calibration skill transfers to
any area of estimation.

I've provided two additional calibration tests of each type—ranges and
binary—in the appendix. Try applying the methods summarized in Exhibit
5.3 to improve your calibration.

Conceptual Obstacles to Calibration

The methods just mentioned don’t help if someone has irrational ideas
about calibration or probabilities in general. While I find that most peo-
ple in decision-making positions seem to have or are able to learn useful
ideas about probabilities, some have surprising misconceptions about these
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EXHIBIT 5.3 Methods to Improve Your Probability Calibration

1. Repetition and feedback. Take several tests in succession, assessing how well
you did after each one and attempting to improve your performance in the
next one.

2. Equivalent bets. For each estimate, set up the equivalent bet to test if that
range or probability really reflects your uncertainty.

3. Consider two pros and two cons. Think of at least two reasons why you
should be confident in your assessment and two reasons you could be wrong.

4. Avoid anchoring. Think of range questions as two separate binary questions
of the form “Are you 95% certain that the true value is over/under (pick one)
the lower/upper (pick one) bound?”

5. Reverse the anchoring effect. Start with extremely wide ranges and narrow
them with the “absurdity test” as you eliminate highly unlikely values.

issues. Here are some comments I've received while taking groups of people
through calibration training or eliciting calibrated estimates after training:

“My 90% confidence can’t have a 90% chance of being right because
a subjective 90% confidence will never have the same chance as an
objective 90%.”

“This is my 90% confidence interval but I have absolutely no idea if that
is right.”

“We couldn’t possibly estimate this. We have no idea.”

“If we don’t know the exact answer, we can never know the odds.”

The first statement was made by a chemical engineer and is indicative
of the problem he was initially having with calibration. As long as he sees
his subjective probability as inferior to objective probability, he won’t get
calibrated. However, after a few calibration exercises, he did find that he
could subjectively apply odds that were correct as often as the odds implied;
in other words, his 90% confidence intervals contained the correct answers
90% of the time.

The rest of the objections are fairly similar. They are all based in part on
the idea that not knowing exact quantities is the same as knowing nothing
of any value. The woman who said she had “absolutely no idea” if her
90% confidence interval was right was talking about her answer to one
specific question on the calibration exam. The trivia question was “What is
the wingspan of a 747, in feet?” Her answer was 100 to 120 feet. Here is an
approximate re-creation of the discussion:

Me: Are you 90% sure that the value is between 100 and 120 feet?

Calibration Student: I have no idea. It was a pure guess.
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Me: But when you give me a range of 100 to 120 feet, that indicates you
at least believe you bave a pretty good idea. That’s a very narrow range
for someone who says they have no idea.

Calibration Student: Okay. But I'm not very confident in my range.

Me: That just means your real 90% confidence interval is probably much
wider. Do you think the wingspan could be, say, 20 feet?

Calibration Student: No, it couldn’t be that short.
Me: Great. Could it be less than 50 feet?
Calibration Student: Not very likely. That would be my lower bound.

Me: We're making progress. Could the wingspan be greater than 500
feet?

Calibration Student: [pause]. . .No, it couldn’t be that long.
Me: Okay, could it be more than a football field, 300 feet?

Calibration Student: [secing where I was going/...Okay, I think my
upper bound would be 250 feet.

Me: So then you are 90% certain that the wingspan of a 747 is between
50 feet and 250 feet?

Calibration Student: Yes.

Me: So your real 90% confidence interval is 50 to 250 feet, not 100 to
120 feet.

During our discussion, the woman progressed from what T would call
an unrealistically narrow range to a range she really felt 90% confident
contained the correct answer. She no longer said she had “no idea” that the
range contained the answer because the new range represented what she
actually knew.

This example is one reason I don’t like to use the word “assumption”
in my analysis. An assumption is a statement we treat as true for the sake of
argument, regardless of whether it is true. Assumptions are necessary if you
have to use deterministic accounting methods with exact points as values.
You could never know an exact point with certainty so any such value
must be an assumption. But if you are allowed to model your uncertainty
with ranges and probabilities, you do not have to state something you don’t
know for a fact. If you are uncertain, your ranges and assigned probabilities
should reflect that. If you have “no idea” that a narrow range is correct, you
simply widen it until it reflects what you do know.

It is easy to get lost in how much you don’t know about a problem and
forget that there are still some things you do know. Enrico Fermi showed his
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skeptical students that even when the question first sounded like something
they couldn’t possibly estimate, there were ways to come to reasonable
ranges. There is literally nothing we will likely ever need to measure where
our only bounds are negative infinity to positive infinity.

The next example is a little different from the last dialog, where the
woman gave an unrealistically narrow range. The next conversation comes
from the security example we were working on with the Department of
Veterans Affairs (VA). The expert initially gave no range at all and simply
insisted that it could never be estimated. He went from a saying he knew
“nothing” about a variable to later conceding that he actually is very certain
about some bounds.

Me: If your systems are being brought down by a computer virus, how
long does the downtime last, on average? As always, all I need is a 90%
confidence interval.

Security Expert: We would have no way of knowing that. Sometimes
we were down for a short period, sometimes a long one. We don’t really
track it in detail because the priority is always getting the system back
up, not documenting the event.

Me: Of course you can’t know it exactly. That’s why we only put a range
on it, not an exact number. But what would be the longest downtime
you ever had?

Security Expert: I don’t know, it varied so much. ..

Me: Were you ever down for more than two entire workdays?
Security Expert: No, never two whole days.

Me: Ever more than a day?

Security Expert: I'm not sure. . .probably.

Me: We are looking for your 90% confidence interval of the average
downtime. If you consider all the downtimes you've had due to a virus,
could the average of all of them have been more than a day?

Security Expert: I sce what you mean. I would say the average is
probably less than a day.

Me: So your upper bound for the average would be. . .?

Security Expert: Okay, I think it’s highly unlikely that the average
downtime could be greater than 10 bours.

Me: Great. Now let’s cownsider the lower bound. How small could
it be?
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Security Expert: Some events are corrected in a couple of hours. Some
take longer.

Me: Okay, but do you really think the average of all downtimes could be
2 bours?

Security Expert: No, I don’t think the average could be that low. I think
the average is at least 6 hours.

Me: Good. So is your 90% confidence interval for the average duration
of downtime due to a virus attack 6 hours to 10 hours?

Security Expert: I took your calibration lests. Let me think. I think there
would be a 90% chance if the range was, say, 4 to 12 hours.

This is a typical conversation for a number of highly uncertain quantities.
Initially the experts resist giving any range at all, perhaps because they have
been taught that in business, the lack of an exact number is the same as
knowing nothing or perhaps because they will be “held accountable for a
number.” But the lack of baving an exact number is not the same as knowing
nothing. The security expert knew that an average virus attack duration of
24 working hours (three workdays), for example, would have been absurd.
Likewise, it was equally absurd that it could be only an hour. But in both
cases this is knowing something, and it quantifies the expert’s uncertainty.
A range of 6 to 10 hours is much less uncertainty than a range of 2 to 20
hours. Either way, the amount of uncertainty itself is of interest to us.

The last two dialogs are examples of absurdity tests in the reverse-
anchoring approach I mentioned earlier. I apply it whenever I get the “There
is no way I could know that” response or the “Here’s my range, but it'’s a
guess” response. No matter how little experts think they know about a
quantity, it always turns out that there are still values they know are absurd.
Again, the point at which a value ceases to be absurd and starts to become
unlikely but somewhat plausible is the edge of their uncertainty about the
quantity. As a final test, I give them an equivalent bet to see if the resulting
range is really a 90% confidence interval.

A Purely Philosophical Interlude

Does 90% Confidence Mean 90% Probability?

All possible definitions of probability fall short of the actual practice.
—William Feller (1906-1970), American mathematician®

(continued)
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(Continued)

“It is unanimously agreed that statistics depends somebow on prob-
ability. But, as to what probability is and how it is connected with
statistics, there has seldom been such complete disagreement and
breakdown of commumnication since the Tower of Babel.”

—LJ. Savage (1917-1971), American mathematician®

Throughout this book, I will refer to a 90% CI as a range of values
(indicated by an upper and lower bound) that has a 90% probability of
containing the true value. I will use this definition regardless of whether
the CI was determined subjectively or—as Chapter 9 will show—with
sample data. By doing so, I'm using a particular interpretation of prob-
ability that treats it as an expression of the uncertainty or “degree of
belief” of the person providing the estimate.

But many (not all) statistics professors hold a different interpretation
that contradicts this. If I computed the 90% CI of, say, the estimate
of the mean weight of a new breed of chickens to be 2.45 to 2.78
pounds after three months, they would argue that it is incorrect to say
there is a 90% probability that the true population mean is within the
interval. They would say the true population mean is either in the range
or not.

This is one aspect of what is called the “frequentist” interpretation of
confidence intervals. Students and many scientists alike find this a con-
fusing position. A frequentist would argue that the term “probability”
can apply only to events that are purely random, “strictly repeatable,”
and have an infinite number of iterations. These are three conditions
that, if we pin a frequentist down on the definitions, make probability
a purely mathematical abstraction that never applies to any situation in
practical decision making.

Most decision makers, however, behave as if they take the position
I use in this book. They are called “subjectivists,” meaning that they use
probabilities to describe a personal state of uncertainty, whether or not
it meets criteria like being “purely random.” This position is also some-
times called the “Bayesian” interpretation (although this interpretation
and the Bayes formula we will discuss in Chapter 10 often have nothing
to do with each other). To a subjectivist, a probability merely describes
what a person knows, whether or not the uncertainty involves a fixed
fact, such as the true mean of a population, as long as it is unrevealed
to the observer. Using probabilities (and confidence intervals) as an
expression of uncertainty is the practical approach for making risky de-
cisions. If you would be willing to bet $1,500 to win a prize of $2,000
if the true population mean was within a 90% CI in the chicken-weight
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example, you would also be willing to make the same bet on a spin of
a dial where you have a 90% chance of winning. Until new informa-
tion, such as the true population mean, is revealed to you, you treat the
confidence in a confidence interval as a probability. If real money was
on the line, I suspect an experiment involving frequentist statisticians
betting on various confidence intervals and dial-spins would show they
would also act like subjectivists.

In many published works in the empirical sciences, physicists,’
epidemiologists,® and paleobiologists’ explicitly and routinely describe
a confidence interval as having a probability of containing the esti-
mated value. Yet it appears that nobody has ever had to retract an
article because of it—nor should anyone. My informal polling indi-
cates that perhaps most mathematical statisticians are frequentists. But,
as some will admit, they seem to be nearly alone in their frequentist
interpretation of probabilities. It is important to note, however, that
either interpretation is pure semantics and is not a function of mathe-
matical fundamentals or empirical observation that can be proven true
or false. This is why these positions are called merely “interpretations”
and not “theorems” or “laws.”

But there is one pragmatic, measurable, real-world difference
between these two interpretations: Students find the frequentist inter-
pretation much more confusing. Some statistics professors understand
this perfectly well and therefore teach both the subjectivist and fre-
quentist interpretations. Like most decision scientists, we will act as if
a 90% confidence interval has a 90% probability of containing the true
value (and we never run into a mathematical paradox because of it).

The Effects of Calibration

Since I started calibrating people in 1995, I've been tracking how well people
do on the trivia tests and even how well-calibrated people do in estimating
real-life uncertainties after those events have come to pass. My calibration
methods and tests have evolved a lot but have been fairly consistent since
2001. Since then, I have taken a total of over 200 people through the cali-
bration training and recorded their performance. For all those people, I've
tracked their expected and actual results on several calibration tests, given
one after the other during a half-day workshop. Since T was familiar with
the research in this area, I expected significant, but imperfect, improvements
toward calibration. What I was less certain of was the variance I might see
in the performance from one individual to the next. The academic research
usually shows aggregated results for all the participants in the research, so
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EXHIBIT 5.4a Aggregate Group Performance.

we can see only an average for a group. When I aggregate the performance
of those in my workshops, I get a result very similar to the prior research.
But because I could break down my data by specific subjects, I saw another
interesting phenomenon.

Exhibits 5.4a and b show the aggregated results of the range questions
for all 200 or more participants (as of 2009) for each of the tests given in the
workshop. Those who showed significant evidence of good calibration early
were excused from subsequent tests. (This turned out to be a strong moti-
vator for performance.) The top chart (Exhibit 5.4a) shows what percentage
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of answers fell within their stated 90% CI, and the bottom chart (Exhibit
5.4b) shows what share of the participants were calibrated or showed no
improvement.

The results in Exhibit 5.4a seem to indicate significant improvement in
the first two or three tests but then a leveling off short of ideal calibration.
Since most academic research shows only aggregate results, not results by
individuals, most report that ideal calibration is very difficult to reach.

But Exhibit 5.4b shows that when I broke down my data by student,
I saw that most students perform superbly by the end of the training; it is
a few poor performers who bring down the average. To determine who
is calibrated we have to allow for some deviation from the target even for
a perfectly calibrated person. Also, an uncalibrated person can get lucky.
Accounting for this statistical error in the testing, fully 75% of participants
are ideally calibrated after the fifth calibration exercise. They are neither
underconfident nor overconfident. Their 90% CIs have about a 90% chance
of containing the correct answer. (Not all had to take all five tests to reach
calibration; Exhibit 5.4b shows the cumulative total.)

Another 10% show significant improvement but don’t quite reach ideal
calibration. And 15% show no significant improvement at all from the first
test they take.!® Why is it that about 15% of people are apparently unable
to improve at all in calibration training? Whatever the reason, it turns out
not to be that relevant. Every single person we ever relied on for actual
estimates was in the first two groups and almost all were in the first ideally
calibrated group. Those who seemed to resist any attempt at calibration
were, even before the testing, never considered to be the relevant expert
or decision maker for a particular problem. It may be that they were less
motivated, knowing their opinion would not have much bearing. Or it
could be that those who lacked aptitude for such problems just don’t tend to
advance to the level of the people we need for the estimates. Either way, it’s
academic.

We see that training works very well for most people. But does proven
performance in training reflect an ability to assess the odds of real-life uncer-
tainties? The answer here is an unequivocal yes. I've had many opportunities
to track how well-calibrated people do in real-life situations, but one partic-
ular controlled experiment still stands out. In 1997, I was asked to train the
analysts of the IT advisory firm Giga Information Group (since acquired by
Forrester Research, Inc.) in assigning odds to uncertain future events. Giga
was an IT research firm that sold its research to other companies on a sub-
scription basis. Giga had adopted the method of assigning odds to events it
was predicting for clients, and it wanted to be sure it was performing well.

I trained 16 Giga analysts using the methods 1 described earlier. At the
end of the training, T gave them 20 specific IT industry predictions they
would answer as true or false and to which they would assign a confidence.
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EXHIBIT 5.5 Calibration Experiment Results for 20 IT Industry Predictions in 1997

The test was given in January 1997, and all the questions were stated as
events occurring or not occurring by June 1, 1997 (e.g., “True or False:
Intel will release its 300 MHz Pentium by June 1,” etc.). As a control, I
also gave the same list of predictions to 16 of their chief information officer
(CIO) clients at various organizations. After June 1 we could determine what
actually occurred. I presented the results at Giga World 1997, their major
IT industry symposium for the year. Exhibit 5.5 shows the results. Note that
some participants opted not to answer all of the questions, so the response
counts on the chart don’t add up to 320 (16 subjects times 20 questions
each) in each of the two groups.

The horizontal axis is the chance the participants gave to their prediction
on a particular issue being correct. The vertical axis shows how many of
those predictions turned out to be correct. An ideally calibrated person
should be plotted right along the dotted line. This means the person was
right 70% of the time he or she was 70% confident in the predictions, 80%
right when he or she was 80% confident, and so on. You see that the
analysts’ results (where the points are indicated by small squares) were
very close to the ideal confidence, easily within allowable error. The results
appear to deviate the most from perfect calibration at the low end of the
scale, but this part is still within acceptable limits of error. (The acceptable
error range is wider on the left of the chart and narrows to zero at the right.)
Of all the times participants said they were 50% confident, they turned out
to be right about 65% of the time. This means they might have known
more than they let on and—only on this end of the scale—were a little
underconfident. It's close; these results might be due to chance. There is
a 1% chance that 44 or more out of 68 would be right just by flipping
a coin.
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The deviation is a bit more significant—at least statistically if not
visually—at the other end of the scale. Where the analysts indicated a high
degree of confidence, chance alone only would have allowed for slightly
less deviation from expected, so they are a little overconfident on that end
of the scale. But, overall, they are very well calibrated.

In comparison, the results of clients who did not receive any calibration
training (indicated by the small triangles) were very overconfident. The
numbers next to their calibration results show that there were 58 instances
when a particular client said he or she was 90% confident in a particular
prediction. Of those times, the clients got less than 60% of those predictions
correct. Clients who said they were 100% confident in a prediction in 21
specific responses got only 67% of those correct. All of these results are
consistent with what has typically been observed in several other calibration
studies over the past several decades.

Equally interesting is the fact that the Giga analysts didn’t actually get
more answers correct. (The questions were general IT industry, not focusing
on analyst specialties.) They were simply more conservative—but not overly
conservative—about when they would put high confidence on a prediction.
Prior to the training, however, the calibration of the analysts on general
trivia questions was just as bad as the clients were on predictions of actual
events. The results are clear: The difference in accuracy is due entirely to
calibration training, and the calibration training—even though it uses trivia
questions—works for real-world predictions.

Many of my previous readers and clients have run their own calibra-
tion workshops and saw varying results depending on how closely they
followed these recommendations. In every case where they could not get
as many people calibrated as I observed in my workshops, I find they did
not actually try to teach all of the calibration strategies mentioned in Exhibit
5.3. In particular, they did not cover the equivalent bet, which seems to be
one of the most important calibration strategies. Those who followed these
strategies and practiced with them on every exercise invariably saw results
similar to mine.

Motivation and experience in estimating may also be a factor. T usually
give my training to experienced managers and analysts, most of whom
knew they would be called on to make real-world estimates with their new
skills. Dale Roenigk of the University of North Carolina—Chapel Hill gave this
same training to his students and noticed a much lower rate of calibration
(although still a significant improvement). Unlike managers, students are
rarely asked for estimates; this may have been a factor in their performance.
And they had no real motivation to perform well. As I observed in my
own workshops, those who did not expect their answers to be used in
the subsequent real-world estimation tasks were almost always those who
showed little or no improvement.
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Even though a few individuals have had some initial difficulties with
calibration, most are entirely willing to accept calibration and see it as a key
skill in estimation. One such individual is Pat Plunkett—the program man-
ager for Information Technology Performance Measurement at the Depart-
ment of Housing and Urban Development (HUD) and a thought leader in
the U.S. government for the use of performance metrics. He has seen people
from various agencies get calibrated since 2000. In 2000, Plunkett was still
with the General Services Administration and was the driver behind the CIO
Council experiment that brought these methods into the VA. Plunkett sees
calibration as a profound shift in thinking about uncertainty. He says: “Cal-
ibration was an eye-opening experience. Many people, including myself,
discovered how optimistic we tend to be when it comes to estimating. Once
calibrated, you are a changed person. You have a keen sense of your level of
uncertainty.”

Perhaps the only U.S. government employee who has seen more peo-
ple get calibrated than Plunkett is Art Koines, a senior policy advisor at
the Environmental Protection Agency, where dozens of people have been
calibrated. Like Plunkett, he was also surprised at the level of acceptance.
“People sat through the process and saw the value of it. The big surprise
for me was that they were so willing to provide calibrated estimates when I
expected them to resist giving any answer at all for such uncertain things.”

The calibration skill was a big help to the VA team in the IT security
case. The VA team needed to show how much it knew now and how much
it didn’t know now in order to quantify its uncertainty about security. The
initial set of estimates (all ranges and probabilities) represent the current
level of uncertainty about the quantities involved. As we will soon see,
knowing one’s current level of uncertainty provides an important basis for
the rest of the measurement process.

There is one other extremely important effect of calibration. In addi-
tion to improving one’s ability to subjectively assess odds, calibration seems
to eliminate objections to probabilistic analysis in decision making. Prior
to calibration training, people might feel any subjective estimate was use-
less. They might believe that the only way to know a CI is to do the
math they vaguely remember from first-semester statistics. They may dis-
trust probabilistic analysis in general because all probabilities seem arbi-
trary to them. But after a person has been calibrated, I have never heard
them offer such challenges. Apparently, the hands-on experience of be-
ing forced to assign probabilities, and then seeing that this was a mea-
surable skill in which they could see real improvements, addresses these
concerns. Although this was not an objective 1 envisioned when T first
started calibrating people, I came to learn how critical this process was in
getting them to accept the entire concept of probabilistic analysis in decision
making.
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You now understand how to quantify your current uncertainty by learn-

ing how to provide calibrated probabilities. Knowing how to provide cal-
ibrated probabilities is critical to the next steps in measurement. Chapters
6 and 7 will teach you how to use calibrated probabilities to compute risk
and the value of information.
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CHAPTER 6

Measuring Risk through Modeling

1t is better to be approximately right than to be precisely wrong.
—Warren Buffett

e’ve defined the difference between uncertainty and risk. Initially,

measuring uncertainty is just a matter of putting our calibrated ranges
or probabilities on unknown variables. Subsequent measurements reduce
uncertainty about the quantity and, in addition, quantify the new state of
uncertainty. As discussed in Chapter 4, risk is simply a state of uncertainty
where some possible outcomes involve a loss of some kind. Generally, the
implication is that the loss is something dramatic, not minor. But for our
purposes, any loss will do.

Risk is itself a measurement that has a lot of relevance on its own.
But it is also a foundation of any other important measurement. As we will
see in Chapter 7, risk reduction is the basis of computing the value of a
measurement, which is in turn the basis of selecting what to measure and
how to measure it. Remember, if a measurement matters to you at all, it
is because it must inform some decision that is uncertain and has negative
consequences if it turns out wrong.

This chapter will discuss a basic tool for almost any kind of risk analysis
and some surprising observations you might make when you start using this
tool. But first, we need to separate from this some popular schemes that are
often used to measure risk but really offer no insight.

How Not to Measure Risk

What many organizations do to “measure” risk is not very enlightening.
The methods T propose for assessing risk would be familiar to an actuary,
statistician, or financial analyst. But some of the most popular methods for
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measuring risk look nothing like what an actuary might be familiar with.
Many organizations simply say a risk is “high,” “medium,” or “low.” Or
perhaps they rate it on a scale of 1 to 5. When I find situations like this,
I sometimes ask how much “medium” risk really is. Is a 5% chance of
losing more than $5 million a low, medium, or high risk? Nobody knows.
Is a medium-risk investment with a 15% return on investment better or
worse than a high-risk investment with a 50% return? Again, nobody knows
because the statements themselves are ambiguous.

Researchers have shown, in fact, that such ambiguous labels don’t help
the decision maker at all and actually add an error of their own. They
add imprecision by forcing a kind of rounding error that, in practice, gives
the same score to hugely different risks.! Worse yet, in my 2009 book,
The Failure of Risk Management, 1 show that users of these methods tend
to cluster responses in a way that magnifies this effect? (more on this in
Chapter 12).

In addition to these problems, the softer risk “scoring” methods man-
agement might use make no attempt to address the typical human biases
discussed in Chapter 5. Most of us are systematically overconfident and will
tend to underestimate uncertainty and risks unless we avail ourselves of the
training that can offset such effects.

To illustrate why these sorts of classifications are not as useful as they
could be, T ask attendees in seminars to consider the next time they have
to write a check (or pay over the Web) for their next auto or homeowner’s
insurance premium. Where you would usually see the “amount” field on the
check, instead of writing a dollar amount, write the word “medium” and see
what happens. You are telling your insurer you want a “medium” amount
of risk mitigation. Would that make sense to the insurer in any meaningful
way? It probably doesn’t to you, either.

It is true that many of the users of these methods will report that they
feel much more confident in their decisions as a result. But, as we will
see in Chapter 12, this feeling should not be confused with evidence of
effectiveness. We will learn that studies have shown that it is very possible to
experience an increase in confidence about decisions and forecasts without
actually improving things—or even making them worse.

For now, just know that there is apparently a strong placebo effect in
many decision analysis and risk analysis methods. Managers need to start
to be able to tell the difference between feeling better about decisions and
actually having better track records over time. There must be measured
evidence that decisions and forecasts actually improved. Unfortunately, risk
analysis or risk management—or decision analysis in general—rarely has a
performance metric of its own.? The good news is that some methods have
been measured, and they show a real improvement.
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Real Risk Analysis: The Monte Carlo

Using ranges to represent your uncertainty instead of unrealistically precise
point values clearly has advantages. When you allow yourself to use ranges
and probabilities, you don’t really have to assume anything you don’t know
for a fact. But precise values have the advantage of being simple to add,
subtract, multiply, and divide in a spreadsheet. So how do we add, subtract,
multiply, and divide in a spreadsheet when we have no exact values, only
ranges? Fortunately, there is a practical, proven solution, and it can be
performed on any modern personal computer.

One of our measurement mentors, Enrico Fermi, was an early user of
what was later called a “Monte Carlo simulation.” A Monte Carlo simulation
uses a computer to generate a large number of scenarios based on prob-
abilities for inputs. For each scenario, a specific value would be randomly
generated for each of the unknown variables. Then these specific values
would go into a formula to compute an output for that single scenario. This
process usually goes on for thousands of scenarios.

Fermi used Monte Carlo simulations to work out the behavior of large
numbers of neutrons. In 1930, he knew that he was working on a problem
that could not be solved with conventional integral calculus. But he could
work out the odds of specific results in specific conditions. He realized that
he could, in effect, randomly sample several of these situations and work
out how neutrons would behave in a system. In the 1940s and 1950s, several
mathematicians—most famously Stanislaw Ulam, John von Neumann, and
Nicholas Metropolis—continued to work on similar problems in nuclear
physics and started using computers to generate the random scenarios. This
time they were working on the atomic bomb for the Manhattan Project and,
later, the hydrogen bomb at Los Alamos. At the suggestion of Metropolis,
Ulam named this computer-based method of generating random scenarios
after Monte Carlo, a famous gambling hotspot, in honor of Ulam’s uncle,
a gambler.* What Fermi begat, and what was later reared by Ulam, von
Neumann, and Metropolis, is today widely used in business, government,
and research. A simple application of this method is working out the return
on an investment when you don’t know exactly what the costs and benefits
will be.

Apparently, it is not obvious to some that uncertainty about the costs
and benefits of some new investment is really the basis of that investment’s
risk. I once met with the chief information officer (CIO) of an investment
firm in Chicago to talk about how the company can measure the value of
information technology (IT). She said that they had a “pretty good handle
on how to measure risk” but “I can’t begin to imagine how to measure
benefits.” On closer look, this is a very curious combination of positions.
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She explained that most of the benefits the company attempts to achieve
in IT investments are improvements in basis points (1 basis point = 0.01%
yield on an investment)—the return the company gets on the investments
it manages for clients. The firm hopes that the right IT investments can
facilitate a competitive advantage in collecting and analyzing information
that affects investment decisions. But when I asked her how the company
came up with a value for the effect on basis points, she said staffers “just
pick a number.”

In other words, as long as enough people are willing to agree on (or at
least not too many object to) a particular number for increased basis points,
that’s what the business case is based on. While it's possible this number is
based on some experience, it was also clear that she was more uncertain
about this benefit than any other. But if this was true, how was the company
measuring risk? Clearly, it was a strong possibility that the firm’s largest risk
in new IT, if it was measured, would be the firm’s uncertainty about this
benefit. She was not using ranges to express her uncertainty about the basis
point improvement, so she had no way to incorporate this uncertainty into
her risk calculation. Even though she felt confident the firm was doing a
good job on risk analysis, she wasn’t really doing any risk analysis at all. She
was, in fact, merely experiencing the previously mentioned placebo effect
from one of the ineffectual risk “scoring” methods.

In fact, all risk in any project investment ultimately can be expressed
by one method: the ranges of uncertainty on the costs and benefits and
probabilities on events that might affect them. If you know precisely the
amount and timing of every cost and benefit (as is implied by traditional
business cases based on fixed point values), you literally have no risk. There
is no chance that any benefit would be lower or cost would be higher than
you expect. But all we really know about these things is the range, not
exact points. And because we only have broad ranges, there is a chance we
will have a negative return. That is the basis for computing risk, and that is
what the Monte Carlo simulation is for.

An Example of the Monte Carlo Method and Risk

This is an extremely basic example of a Monte Carlo simulation for people
who have never worked with it before but have some familiarity with the
Excel spreadsheet. If you have worked with a Monte Carlo tool before, you
probably can skip these next few pages.

Let’s say you are considering leasing a new machine for one step in a
manufacturing process. The one-year lease is $400,000 with no option for
early cancellation. So if you aren’t breaking even, you are still stuck with it
for the rest of the year. You are considering signing the contract because
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you think the more advanced device will save some labor and raw materials
and because you think the maintenance cost will be lower than the existing
process.

Your calibrated estimators gave the next ranges for savings in mainte-
nance, labor, and raw materials. They also estimated the annual production
levels for this process.

Maintenance savings (MS): $10 to $20 per unit

Labor savings (LS): —$2 to $8 per unit

Raw materials savings (RMS): $3 to $9 per unit
Production level (PL): 15,000 to 35,000 units per year
Annual lease (breakeven): $400,000

Now you compute your annual savings very simply as:
Annual Savings = (MS + LS + RMS) x PL

Admittedly, this is an unrealistically simple example. The production
levels could be different every year, perhaps some costs would improve
further as experience with the new machine improved, and so on. But
we’ve deliberately opted for simplicity over realism in this example.

If we just take the midpoint of each of these ranges, we get

Annual Savings = ($15 + $3 + $6) x 25,000 = $600,000

It looks like we do better than the required breakeven, but there are
uncertainties. So how do we measure the risk of this lease? First, let’s define
risk for this context. Remember, to have a risk, we have to have uncertain
future results with some of them being a quantified loss. One way of looking
at risk would be the chance that we don’t break even—that is, we don’t
save enough to make up for the $400,000 lease. The farther the savings
undershoot the lease, the more we have lost. The $600,000 is the amount
we save if we just choose the midpoints of each uncertain variable. How
do we compute what that range of savings really is and, thereby, compute
the chance that we don’t break even?

Since these aren’t exact numbers, usually we can’t just do a single cal-
culation to determine whether we met the required savings. Some methods
allow us to compute the range of the result given the ranges of inputs un-
der some limited conditions, but in most real-life problems, those conditions
don’t exist. As soon as we begin adding and multiplying different types of
distributions, the problem usually becomes what a mathematician would call
“unsolvable” or “having no solution.” This is exactly the problem the physi-
cists working on atomic fission ran into. To resolve this problem, Monte
Carlo simulations use a brute-force approach made possible with comput-
ers. We randomly pick a bunch of exact values—thousands—according to



84 Before You Measure

the ranges we prescribed and compute a large number of exact values.
Then we use those randomly chosen values to compute a single result. Af-
ter thousands of possible results are calculated, the probabilities of different
results can be estimated.

In this example, each scenario is a set of randomly generated values for
labor savings, maintenance savings, and so on. After each set is generated,
those values are used in the annual savings calculation. Some of the annual
savings results will be higher than $600,000 and some will be lower. Some
will even be lower than the $400,000 required to break even. After thousands
of scenarios are generated, we can determine how likely it is that the lease
will be a net gain.

You can run a Monte Carlo simulation easily with Excel on a PC, but
we need a bit more information than just the 90% confidence interval (CD
for each of the variables. We also need the shape of the distribution. Some
shapes are more appropriate for certain values than other shapes. One that
is often used with the 90% CI is the well-known “normal” distribution. The
normal distribution is the familiar-looking bell curve where the probable
outcomes are bunched near the middle but trail off to ever less likely values
in both directions. (See Exhibit 6.1.)

With the normal distribution, I will briefly mention a related concept
called the standard deviation. People don’t seem to have an intuitive

The Normal Distribution

‘What a normal distribution looks like:

| 90% Confidence Interval |

Characteristics:
e Values near the middle are more likely than values farther away.

o The distribution is symmetrical, not lopsided—the mean is exactly halfway
between the upper and lower bounds of a 90% CI.

e The ends trail off indefinitely to ever more unlikely values, but there is no
“hard stop”; a value far outside of a 90% CI is possible but not likely.

How to make a random distribution with this shape in Excel:
=norminv(rand(),A, B)
A=mean = (90% CI upper bound + 90% CI lower bound)/2 and
B="standard deviation” =(90% CI upper bound — 90% CI lower bound)/3.29

EXHIBIT 6.1 Normal Distribution
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understanding of standard deviation, and because it can be replaced by a
calculation based on the 90% CI (which people do understand intuitively),
I won't focus on it here. Exhibit 6.1 shows that there are 3.29 standard
deviations in one 90% CI, so we just need to make the conversion.

For our problem, we can just make a random number generator in a
spreadsheet for each of our ranges. Following the instructions in Exhibit 6.1,
we can generate random numbers for Maintenance savings with the Excel
formula:

= norminv(rand(), 15, (20 — 10)/3.29)

Likewise, we follow the instructions in Exhibit 6.1 for the rest of the
ranges. Some people might prefer using the random number generator in the
Excel Analysis Toolpack, and you should feel free to experiment with it. I'm
showing this formula in Exhibit 6.2 for a bit more of a hands-on approach.
(Download this spreadsheet from www.howtomeasureanything.com.)

We arrange the variables in columns as shown in Exhibit 6.2. The last
two columns are just the calculations based on all the previous columns.
The Total Savings column is the formula for annual savings (shown ear-
lier) based on the numbers in each particular row. For example, sce-
nario 1 in Exhibit 6.2 shows its Total Savings as ($9.27 + $4.30 + $7.79) x
23,955 = $511,716. You don't really need the “Breakeven Met?” column;

Scenario# Mainte_nance Lapor Matgrials Units To_tal Breakeven
Savings Savings | Savings | Produced | Savings Met?

1 $ 9.27 $430| $ 7.79 23,955 | $511,716 Yes

2 $15.92 $264 $ 9.02 26,263 | $724,127 Yes

3 $17.70 $ 463 $ 8.10 20,142 | $612,739 Yes

4 $15.08 $675| $ 5.19 20,644 | $557,860 Yes

5 $19.42 $928| $ 968 25,795 | $990,167 Yes

6 $11.86 $317| $ 5.89 17,121 | $358,166 No

7 $15.21 $046| $ 4.14 29,283 | $580,167 Yes
9,999 $1468| $(022)| $ 5.32 33,175 | $655,879 Yes
10,000 $ 749| $(0.01)| $ 897 24,237 | $398,658 No

EXHIBIT 6.2 Simple Monte Carlo Layout in Excel
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EXHIBIT 6.3 Histogram

I'm just showing it for reference. Now let's copy it down and make
10,000 rows.

We can use a couple of other simple tools in Excel to get a sense of how
this turns out. The “=countif()” function allows you to count the number
values that meet a certain condition—in this case, those that are less than
$400,000. Or, for a more complete picture, you can use the histogram tool
in the Excel Analysis Toolpack. That will count the number of scenarios
in each of several “buckets,” or incremental groups. Then you can make
a chart to display the output, as shown in Exhibit 6.3. This chart shows
how many of the 10,000 scenarios came up in each $100,000 increment.
For example, just over 1,000 scenarios had values between $300,000 and
$400,000.

You will find that about 14% of the results were less than the $400,000
breakeven. This means there is about a 14% chance of losing money, which
is a meaningful measure of risk. But risk doesn’t have to mean just the
chance of a negative return on investment. In the same way we can measure
the “size” of a thing by its height, weight, girth, and so on, there are a lot
of useful measures of risk. Further examination shows that there is a 3.5%
chance that the factory will lose more than $100,000 per year instead of
saving money. However, generating no revenue at all is virtually impossible.
This is what we mean by “risk analysis.” We have to be able to compute the
odds of various levels of losses. If you are truly measuring risk, this is what
you can do. Again, for a spreadsheet example of this Monte Carlo problem,
see the Web site at www.howtomeasureanything.com.

A shortcut can apply in some situations. If we had all normal distribu-
tions and we simply wanted to add or subtract ranges—such as a simple list
of costs and benefits—we might not have to run a Monte Carlo simulation.
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If we just wanted to add up the three types of savings in our example, we
can use a simple calculation. Use these six steps to produce a range:

1. Subtract the midpoint from the upper bound for each of the three cost
savings ranges: in this example, $20 — $15 = $5 for maintenance savings;
we also get $5 for labor savings and $3 for materials savings.

2. Square each of the values from the last step: $5 squared is $25, and so
on.

3. Add up the results: $25 + $25 + $9 = $59.

4. Take the square root of the total: $59°.5 = $7.68.

5. Total up the means: $15 + $3 + $6= $24.

6. Add and subtract the result from step 4 from the sum of the means to

get the upper and lower bounds of the total, or $24 + $7.68 = $31.68
for the upper bound, $24 — $7.68 = $16.32 for the lower bound.

So the 90% CI for the sum of all three 90% CIs for maintenance, labor,
and materials is $16.32 to $31.68. In summary, the range interval of the total
is equal to the square root of the sum of the squares of the range intervals.
(Note: If you are already familiar with the 90% CI from a basic stats text or
have already read ahead to Chapter 9, keep in mind that $7.68 is not the
standard deviation. $7.68 is the difference between the midpoint of the range
and either of the bounds of a 90% CI, which is 1.645 standard deviations.)

You might see someone attempting to do something similar by adding
up all the “optimistic” values for an upper bound and “pessimistic” values
for the lower bound. This would result in a range of $11 to $37 for these
three CIs, which slightly exaggerates the 90% CI. When this calculation is
done with a business case of dozens of variables, the exaggeration of the
range becomes too significant to ignore. It is like thinking that rolling a
bucket of six-sided dice will produce all 1s or all 6s. Most of the time,
we get a combination of all the values, some high, some low. Using all
optimistic values for the optimistic case and all pessimistic values for the
pessimistic case is a common error and no doubt has resulted in a large
number of misinformed decisions. The simple method I just showed works
perfectly well when you have a set of 90%; CIs you would like to add up.

But we don’t just want to add these up, we want to multiply them by the
production level, which is also a range. The simple range addition method
doesn’t work with anything other than subtraction or addition so we would
need to use a Monte Carlo simulation. A Monte Carlo simulation is also
required if these were not all normal distributions. Although a wide variety
of shapes of distributions for all sorts of problems is beyond the scope of this
book, it is worth mentioning two others besides the normal distribution: a
uniform distribution and the binary distribution. There are many more types
of distributions than this and some will be briefly mentioned later in this
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chapter. For now, we will focus on some simple distributions to get you
started. You will learn to add more as you master them.

One realism-enhancing improvement to our simple machine leasing
model can illustrate how the uniform and binary distributions could be
used. What if there was a 10% chance of a loss of a major account that
would, by itself, drop the demand (and therefore the production levels) by
1,000 units per month (i.e., 12,000 units per year)? We could model this
as a discrete either/or event that could happen at any time of the year.
This would be a major, sudden drop in demand that the previous normal
distribution doesn’t adequately model.

We would just add a couple of columns to our table. For each scenario,
we would have to determine if this event occurred. If it did, we would have
to determine when during the year it occurred so the production levels for
the year could be determined. For those scenarios where the contract loss
does not occur, we don’t need to change the production level. The next
formula could adjust the production level we generated previously with the
normal distribution:

Production level considering possibility of a major contract loss:

PLy /contract loss = PLnormal — 1,000 units x (Contract Loss x Months Remaining)

As a binary event, the “Contract Loss” has a value of one 10% of the
time and zero 90% of the time. This would be modeled using the equation
in Exhibit 6.4 (where P is set to 0.1). This is also called a “Bernoulli distri-
bution,” after the seventeenth-century mathematician Jacob Bernoulli, who
developed several early concepts about the theory of probability.

The Binary Distribution

What a binary distribution looks like:
60%

40%

Characteristics:
¢ This distribution produces only two possible values.

o There is a single probability that one value will occur
(60% in the chart), and the other value occurs the rest of the time.

How to make a random distribution with this shape in Excel:
=if(rand()<P,1,0)
P=probability that a “1” will appear (a “0” appears with 1-P probability)

EXHIBIT 6.4 Binary (a.k.a. Bernoulli) Distribution
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The Uniform Distribution
What a uniform distribution looks like:

| 100% Confidence Interval |

Characteristics:
» All values between the bounds are equally likely.

» The distribution is symmetrical, not lopsided—the mean is exactly halfway
between the upper and lower bounds.

e The bounds are “hard stops” and are, in effect, a “100% Cl"—nothing above
the upper bound nor below the lower bound is possible.

How to make a random distribution with this shape in Excel:
=rand()*(UB-LB)+LB
UB=Upper bound
LB=Lower bound

EXHIBIT 6.5 Uniform Distribution

The “Months Remaining” (in the year), however, might be a uniform
distribution, as shown in Exhibit 6.5 (where “upper bound” is set to 12
months and “lower bound” is 0). If we choose a uniform distribution, we
are effectively saying that any date during the year for this loss of a contract
is just as likely as any other date.

If the contract is not lost, “Contract Loss” is zero and no change is made
to the previous, normally distributed production level. If the contract is lost
early in the year (where months remaining in the year is high), we lose more
orders than if we had lost the contract later in the year. The spreadsheet at
www.howtomeasureanything.com for the Monte Carlo example also shows
this alternative contract loss example. Each of these distributions will come
up later when we discuss the value of information.

Our Monte Carlo simulation can be made as elaborate and realistic as
we like. We can compute the benefits over several years, with uncertain
growth rates in demand, losing or gaining individual customers, and the
possibility of new technology destroying demand. We can even model the
entire factory floor, simulating orders coming in and jobs being assigned
to machines. We can have inventory levels going up and down and model
work stoppages if we run out of something and have to wait for the next
delivery. We can model how the flow would change or stop if one machine
broke down and jobs had to be reassigned or delayed.

All of this might be relevant to a decision to lease or buy new equipment
or even a new factory. If the risk is high enough (i.e., a big investment with
lots of uncertainty), such an elaborate simulation could easily be justified
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to support our decision. And every uncertain variable in the model is a
candidate for a measurement that could reduce our uncertainty.

Even a relatively simple Monte Carlo like the example we showed here
can be enlightening. We have only scratched the surface of Monte Carlo
simulations but, like anything else, start simple and improve your skills
over time. Exhibit 6.6 is a future study list of concepts you might want to
pick up once you’ve mastered the basics.

EXHIBIT 6.6  Optional: Additional Monte Carlo Concepts for the More Ambitious
Student

Description (All additional examples are on the book’s Web

Concept and Its site at www.howtomeasureanything.com along with a

Complexity suggested reading list.)

More Distributions  It's worth having a few more distributions in your tool box to
(No more handle a variety of situations because sometimes the
complicated wrong distribution can be wrong by a lot. It can be shown
than anything that a normal distribution is a very bad approximation for a
else discussed variety of phenomena including fluctuations of the stock
so far) market, the cost of software projects, or the size of an

earthquake, plague, or storm. I show more examples of
each of these distributions on the book’s Web site.

Correlations (Still Some of the variables in a model might not be independent

not too much of each other. For example, if a union contract affects the
more hourly rates of both maintenance workers and production
complicated) workers, they are probably correlated. We can address that

by generating correlated random numbers for them or by
modeling what they have in common. I show both
solutions on the Web site.

Markov These are simulations where a single scenario is itself
Simulations separated into a large number of time intervals, each of
(Getting more which is a simulation unto itself and each time interval
complicated) simulation affects the following time interval. This can

apply to complex manufacturing systems, stock prices, the
weather, computer networks, and construction projects.
Again, see a very simple example on the Web site.

Agent-based Just as Markov simulations split up the problem into time
Models (Getting intervals, we can also have separate simulations for a large
very number of individuals acting independently or somewhat
complicated) in concert. The term agent often implies that each actor

follows a set of decision rules. Traffic simulations are an
example of models made up of a multitude of agents
(vehicles) for a large number of time intervals. A very, very
simple example of this is illustrated on the book’s Web site.
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What we haven’t discussed about the previous example is whether
you would find it an acceptable risk. In the example, the average over a
large number of runs is about $600,000 in net benefits with a 14% chance
the machine lease would be a net loss. Would you take this bet? If not,
how much would the average benefits have to increase to justify the 14%
chance of a loss? How much would the chance of loss have to decrease to
make it acceptable? If you would have accepted the bet, how much would
chance of loss have to increase or average net benefits decrease before you
would have to reject it? What if the chance of loss was not changed but the
magnitude of a loss was?

A common simplifying approach to quantifying a risk is simply to mul-
tiply the likelihood of some loss times the amount of the loss. This is
simple but can be misleading. This assumes the decision maker is “risk
neutral.” That is, if T offered you a 10% chance to win $100,000, you would
actually be willing to pay as much as $10,000 for it. And you would con-
sider it equivalent to a 50% chance of winning $20,000 or an 80% chance
of winning $12,500. But the fact is that most people are not really risk
neutral.

Determining how much risk is acceptable for a given return is a critical
part of an organization’s risk analysis. To make consistent choices, it is
important to quantify these various trade-offs in order to clearly state how
risk averse or risk tolerant an organization really is. As we will find out later,
all sorts of random, arbitrary, and irrelevant factors affect our decisions more
than we would like to think. They even affect our preferences more than
we would like to think. Documenting what your risk preferences really
are is like measuring all risks by the same standard ruler instead of by a
ruler that changes every day. When we get to Chapter 11, we will see how
preferences like this can be nailed down.

Tools and Other Resources for Monte Carlo Simulations

Fortunately, we don’t have to build Monte Carlo simulations from scratch
these days. Many tools can be very helpful and improve the productivity
of an analyst trained in the basics. They range from simple sets of Excel
macros—what I use—combined with a practical consulting approach to
very sophisticated packages.

A fellow evangelist in the use of Monte Carlo simulations in business is
Sam Savage, a Stanford University professor who developed a tool he calls
Insight.xls. Savage focuses on trying to sell an intuitive philosophy about
using probabilistic analysis. He also has some ideas about how to institu-
tionalize the entire process of creating Monte Carlo simulations. If different
parts of the same organization are using simulations, Savage believes or-
ganizations should use a common pool of shared distributions instead of
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inventing their own distributions for common values. Furthermore, he be-
lieves the definition of the distribution itself sometimes can be a technical
challenge that requires certain proficiency with the mathematics.

Savage has an interesting approach that he calls Probability Manage-
ment: “Suppose we just took [the problem of generating probability distri-
butions] out of your hands. Now what’s your excuse for not using proba-
bility distributions? Some people don’t know how to generate a probability
distribution—they don’t know how to generate electricity either, but they
still use it.”

His idea is to appoint a chief probability officer (CPO) for the firm.
The CPO would be in charge of managing a common library of probability
distributions for use by anyone running Monte Carlo simulations. Savage
invokes concepts like the Stochastic Information Packet (SIP), a pregen-
erated set of 100,000 random numbers for a particular value. Sometimes
different SIPs would be related. For example, the company’s revenue might
be related to national economic growth. A set of SIPs that are generated so
they have these correlations are called “SLURPS” (Stochastic Library Units
with Relationships Preserved). The CPO would manage SIPs and SLURPs so
that users of probability distributions don’t have to reinvent the wheel every
time they need to simulate inflation or healthcare costs.

I would add a few other things to make Monte Carlo simulations as
formally defined and accepted as accounting processes in organizations:

Certification of analysts. Right now, there is not a lot of quality control
for decision analysis experts. Only actuaries, in their particular spe-
cialty of decision analysis, have extensive certification requirements. As
for actuaries, certification in decision analysis should eventually be an
independent not-for-profit program run by a professional association.
Some other professional certifications now partly cover these topics but
fall far short in substance in this particular area. For this reason, I began
certifying individuals in Applied Information Economics because there
was an immediate need for people to be able to prove their skills to
potential employers.

Certification for calibrated estimators. As we discussed earlier, an un-
calibrated estimator has a strong tendency to be overconfident. Any cal-
culation of risk based on his or her estimates will likely be significantly
understated. However, a survey I once conducted showed that calibra-
tion is almost unheard of among those who build Monte Carlo models
professionally, even though a majority used at least some subjective
estimates. (About a third surveyed used mostly subjective estimates.)’
Calibration training will be one of the simplest improvements to risk
analysis in an organization.
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Well-documented procedures and templates for how models are built
Sfrom the input of various calibrated estimators. It takes some time to
smooth out the wrinkles in the process. Most organizations don’t need
to start from scratch for every new investment they are analyzing; they
can base their work on that of others or at least reuse their own prior
models. I've executed nearly the same analysis procedure following
similar project plans for a wide variety of decision analysis problems
from IT security, military logistics, and entertainment industry invest-
ments. But when I applied the same method in the same organization
on different problems, I often found that certain parts of the model
would be similar to parts of earlier models. An insurance company
would have several investments that include estimating the impact on
“customer retention” and “claims payout ratio.” Manufacturing-related
investments would have calculations related to “marginal labor costs
per unit” or “average order fulfillment time.” These issues don’t have to
be modeled anew for each new investment problem. They are reusable
modules in spreadsheets.

Adoption of a single automated tool set. Exhibit 6.7 shows a few of
the many tool sets available. You can get as sophisticated as you like,
but starting out doesn’t require any more than some good spreadsheet-
based tools. I recommend starting simple and adopting more extensive
tool sets as the situations demand.

The Risk Paradox and the Need for Better Risk Analysis

Building a Monte Carlo simulation is barely much more complicated than
constructing any spreadsheet-based business case. In fact, by almost any
measure of complexity, the Monte Carlo simulations I built to assess the
risk of large major decisions, such as IT projects, construction projects, or
research and development investments, are in every case significantly less
complex than the projects I'm analyzing.

Still, by some standards, Monte Carlo simulations can seem a bit com-
plex. But are they too complex to be practical in business? Not by a long
shot. Just like any other complex business problem, management can bring
in people with the skills to do the simulations.

Despite this fact, quantitative risk analysis based on Monte Carlo simu-
lations has not been universally adopted. Many organizations employ fairly
sophisticated risk analysis methods on particular problems; for example,
actuaries in an insurance company define the particulars of an insurance
product, statisticians analyze the ratings of a new TV show, and production
managers are using Monte Carlo simulations to model changes in produc-
tion methods. But those very same organizations do not routinely apply
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EXHIBIT 6.7 A Few Monte Carlo Tools

Tool Made by

Description

AIE Wizard Hubbard Decision
Research, Glen
Ellyn, IL

Excel-based set of macros; also computes value
of information and portfolio optimization;
emphasizes methodology over the tool and
provides consulting for practical
implementation issues.

Crystal Ball  Oracle (previously

Excel based; a wide variety of distributions; a

Decisioneering, fairly sophisticated tool. Broad user base and
Inc., purchased technical support. Has adopted Savage’s SIPs
by Oracle), and SLURPS and Dist utility.
Denver, CO

@Risk Palisade Another Excel-based tool; main competitor to
Corporation, Crystal Ball. Many users and technical
Ithaca, NY support.

XLSim Stanford U Inexpensive package designed for ease of
Professor Sam learning and use. Savage also provides
Savage, seminars and management protocols for
AnalyCorp making Monte Carlo methods practical in

organizations.

Risk Solver  Frontline Systems,

Unique Excel-based development platform to

Engine Incline Village, perform “interactive” Monte Carlo simulation
NV at unprecedented speed. Supports SIP and
SLURP formats for probability management.
Analytica Lumina Decision Uses an extremely intuitive graphical interface
Systems, Los that allows complex systems to be modeled
Gatos, CA as a kind of flowchart of interactions; has a
significant presence in government and
environmental policy analysis.
SAS SAS Corporation, Goes well beyond the Monte Carlo; extremely
Raleigh, NC sophisticated package used by many
professional statisticians.
SPSS SPSS Inc., Also goes far beyond the Monte Carlo; tends to
Chicago, IL be more popular among academics.

Mathematica Wolfram
Research,
Champaign, IL

Another extremely powerful tool that does
much more than Monte Carlo; used primarily
by scientists and mathematicians but has
applications in many fields.
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those same sophisticated risk analysis methods to much bigger decisions
with more uncertainty and more potential for loss.

In the spring of 1999, T was teaching a seminar to a group of execu-
tives wanting to learn about risk analysis for IT. T began to explain a few
basic concepts for Monte Carlo simulations and asked whether anyone was
using such methods to assess risk. Usually respondents who claim to assess
risk just apply subjective “high,” “medium,” or “low” assessments with no
quantitative basis whatsoever. My objective is to help attendees to differen-
tiate between this kind of fluff and the kind of analysis an actuary would
recognize. One of my students said he routinely applied analysis just like
this using a common Monte Carlo tool. Impressed, I said, “You are the first
IT executive I've ever met who already does this.” He said, “No, I'm not
in IT. I do analysis of production methods for Boise Cascade” (the paper
and wood company). I asked, “Which do you think is more risky, IT invest-
ments or paper production?” He agreed that IT was riskier but added that
the company never applies Monte Carlo simulation methods to IT.

Risk Paradox

If an organization uses quantitative risk analysis at all, it is usually for
routine operational decisions. The largest, most risky decisions get the
least amount of proper risk analysis.

Over the years, in case after case, I have found that if organizations
apply quantitative risk analysis at all, it is on relatively routine, operational-
level decisions. The largest, most risky decisions are subject to almost no
risk analysis—at least not any analysis that an actuary or statistician would
be familiar with. I refer to the phenomenon called the “risk paradox.”

Almost all of the most sophisticated risk analysis is applied to less risky
operational decisions while the riskiest decisions—mergers, IT portfolios,
big research and development initiatives, and the like—receive virtually
none (or at least not the kind that passes as real, quantitative risk analysis).
Why is this true? Perhaps it is because there is a perception that operational
decisions—approving a loan or computing an insurance premium—seem
simpler to quantify but the truly risky decisions are too elusive to quantify.
This is a serious mistake. As I have shown, there is nothing “immeasurable”
about the big decisions.

Granted, the 2008 financial crisis showed that some models were flawed.
But those flaws were based on flawed assumptions about the distribution
of price changes. (See Exhibit 6.6 regarding distributions.) Nassim Taleb, a
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popular author and critic of the financial industry, points out many such
flaws but does not include the use of Monte Carlo simulations among them.
He himself is a strong proponent of these simulations. Monte Carlo simula-
tions are simply the way we do the math with uncertain quantities. Aban-
doning Monte Carlos because of the failures of the financial markets makes
as much sense as giving up on addition and subtraction because of the fail-
ure of accounting at Enron or AIG’s overexposure in credit default swaps.

In fact, the lack of a more widespread use of Monte Carlo simulations
may be causing organizations to give up major benefits and expose them-
selves to significant avoidable risks. Two extensive studies on the use of
Monte Carlos find that the use of these tools actually can be shown to
improve forecasts and decisions and enhances the overall financial perfor-
mance of the firm:

1. For over 100 unmanned space probe missions, NASA has been apply-
ing both a soft “risk score” and more sophisticated Monte Carlo simu-
lations to assess the risks of cost and schedule overruns and mission
failures. The cost and schedule estimates from Monte Carlo simulations,
on average, have less than half the error of the traditional accounting
estimates.”

2. A study of oil exploration firms shows a strong correlation between
the use of quantitative methods, including Monte Carlo simulations, to
assess risks and a firm’s financial performance.”

Detailed computer simulations are considered standard practice in many
other areas. Modern weather forecasting has allowed us to at least foresee
the possibility of a hurricane hitting a major city much earlier than used to
be possible. Structural models of buildings in earthquakes are used to test
designs. Many of these simulations also depend on Monte Carlo methods
to generate thousands or even millions of possible scenarios.

Once again, the reason why a measurement is important to a business
or government agency is because of the existence of risk. Without risk,
information would literally have no value to decision making. Now that
you understand the concepts of uncertainty and risk in specific quantita-
tive terms, we can move on to a rarely used but very powerful tool in
measurement: computing the value of information.
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CHAPTER '7

Measuring the Value of Information

f we could measure the value of information itself, we could use that to

determine the value of conducting measurements. If we did compute this
value, we would probably choose to measure completely different things.
We would probably spend more effort and money measuring things we
never measured before, and we would probably ignore some things we
routinely measured in the past.

The McNamara Fallacy

The first step is to measure whatever can be easily measured. This is

OK as far as it goes. The second. step is to disregard that which can’t

easily be measured or to give it an arbitrary quantitative value.

This is artificial and misleading. The third step is to presume that

what can’t be measured easily isn’t important. This is blindness. The

Jfourth step is to say that what can’t easily be measured really doesn'’t
exist. This is suicide.

—Charles Handy, The Empty Raincoat (1995)—describing

the Vietnam-era measurement policies of Secretary

of Defense Robert McNamara

As mentioned in Chapter 2, there are really only three basic reasons
why information ever has value to a business:

1. Information reduces uncertainty about decisions that have economic
consequences.

2. Information affects the behavior of others, which has economic conse-
quences.

3. Information sometimes has its own market value.

99
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The solution to the first of these three has existed since the 1950s in a
field of mathematics called “decision theory,” an offshoot of game theory. It
is also the method we focus on, mostly because it is more relevant to most
common needs and because the other two are somewhat simpler. Before
I explain the value of information in the context of decisions, let’s briefly
discuss the value of its effects on the behavior of others and its potential
market value.

The value of information regarding its effect on human behavior is
exactly equal to the value of the difference in human behavior. Measur-
ing productivity may, of course, have bearing on uncertain decisions about
major investments. But it also has a value because those whose produc-
tivity is being measured may, in response, become more productive. If
measuring productivity itself results in a 20% increase in productivity, the
monetary value of that productivity increase is the “incentive” value of the
measurement. We do need to consider the issues raised in Chapter 3 about
how incentives from measurements may have unforeseen effects. But these
effects, too, are at least observable—and therefore measurable—once the
incentives are in place.

If the value of information is its market value, then we have a market
forecasting problem no different from estimating the sales for any other
product. If we are collecting information on traffic at city intersections at
various times of day to sell to firms that evaluate retail locations, then the
value of that measurement is our expected profit from the sale of that
information.

All of the measurement methods we discuss in this book are relevant
to both the measurement of the market value and the measurement of
the incentive value of information. But most of the reasons we measure
something in business are at least partially related to how the measure-
ment affects management decisions. This is what the rest of this chapter
is about.

The Chance of Being Wrong and the Cost of Being Wrong:
Expected Opportunity Loss

The esoteric field of game theory provided a formula for the value of infor-
mation over 60 years ago, and it can be understood both mathematically and
intuitively. We can make better “bets” (i.e., decisions) when we can reduce
uncertainty (i.e., make measurements) about them. Knowing the value of
the measurement affects how we might measure something or even whether
we need to measure it at all.

If you are uncertain about a business decision (and a calibrated person
should be realistic about the level of uncertainty), that means you have a
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chance of making the wrong decision. By “wrong,” I mean that the conse-
quences of some alternative would have turned out to be preferable, and
you may have selected that alternative, if only you had known. The cost of
being wrong is the difference between the wrong choice you took and the
best alternative available—that is, the one you would have chosen if you
had perfect information.

For example, if you are going to invest in a bold new ad campaign, you
are hoping the investment will be justified. But you don’t know for a fact that
it will be successful. Historically, you know there have been ad campaigns
that, while they initially appeared to have all the look of a great idea, turned
out to be a market flop. Some of the more catastrophic examples have even
helped competitors. On the plus side, the right campaign sometimes can
directly result in a major increase in revenue. It does no good to stand still
and make no investments in your business just because there is a chance of
being wrong. So, based on the best information you have so far, the default
decision is to go ahead with the campaign—but there may be a value to
measuring it first.

As 1 mentioned in Chapter 6, the existence of this risk and the desire
to reduce it is the reason the decision maker needs a measurement. In
this example, we are dealing with a special case of measurement—the
forecast—which is a measurement of likely future outcomes. To compute
the value of measuring the likelihood of success of an ad campaign, you
have to know both what your loss would be if the campaign turns out to be
a bad investment and the chance it will turn out to be a bad investment. If
there was no chance that the campaign would fail, there would be no need
whatsoever to reduce uncertainty about it—the decision would be risk-free
and obvious.

Just to keep the example very simple, let’s look at a binary situation—
you either fail or succeed, period. Suppose you could make $40 million
profit if the ad works and lose $5 million (the cost of the campaign) if
it fails. Then suppose your calibrated experts say they would put a 40%
chance of failure on the campaign. With this information, you could create
a table, as shown in Exhibit 7.1.

The Opportunity Loss (OL) for a particular alternative is just the cost if
we chose that path and it turns out to be wrong. The Expected Opportunity

EXHIBIT 7.1 Extremely Simple Expected Opportunity Loss Example

Variable Campaign Works Campaign Fails
Chance of Success 60% 40%
Impact if Campaign is Approved +$40 million —$5 million

Impact if Campaign is Rejected $0 $0
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Loss (EOL) for a particular strategy is the chance of being wrong times the
cost of being wrong. For the example, you get these answers:

Opportunity Loss if Campaign Approved: $5 M (cost of the campaign)
Opportunity Loss if Campaign Rejected: $40 M (gain foregone)
Expected Opportunity Loss if Approved: $5 M x 40% = $2 M
Expected Opportunity Loss if Rejected: $40 M x 60% = $24 M

EOL exists because you are uncertain about the possibility of negative
consequences of your decision. If you could reduce this uncertainty, the
EOL would also be reduced. In regard to making business decisions, that is
what a measurement is really for.

EOL is also an expression of risk. It is the simple “risk-neutral” solution
first mentioned in Chapter 6. We simply multiply the chance of a loss times
the amount of the loss, regardless of how risk averse the decision maker
may be. It is a good basis for computing the value of information without
getting too complex. But also it is not far off the mark even if we do consider
aversion to risk. The cost of measurement is generally small compared to
the cost of the decisions the measurement will support. When a risk-averse
person takes a large number of very small bets, their choices will be close
to risk neutral. With your own money, you may not consider a 20% chance
to lose $100,000 to be exactly equal to a certain reward of $20,000, but
you may consider a 20% chance of winning $10 to be very close to $2
Likewise, your value of information for each of the potential measurements
of a large investment decision would be fairly risk neutral compared to the
investment itself.

All measurements that have value must reduce the uncertainty of some
quantity that affects some decision with economic consequences. The bigger
the reduction in EOL, the higher the value of a measurement. The difference
between the EOL before a measurement and the EOL after a measurement
is called the “Expected Value of Information” (EVD. In other words, the
value of information is equal to the value of the reduction in risk.

Computing the EVI of a measurement before we make the measurement
requires us to estimate how much uncertainty reduction we can expect.
This sometimes is complicated, depending on the variable being measured,
but there is a shortcut. The easiest measurement value to compute is the
Expected Value of Perfect Information (EVPD. If you could eliminate un-
certainty, EOL would be reduced to zero. So the EVPI is simply the EOL of
your chosen alternative. In the example, the “default” decision (what you
would do if you didn’t make a further measurement) was to approve the
campaign, and—as explained—that EOL was $2 million. So the value of
eliminating any uncertainty about whether this campaign would succeed is
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simply $2 million. If you could only reduce but not eliminate uncertainty,
the EVI would be something less.

Value of Information

Expected Value of Information (EVI) = Reduction in expected
opportunity loss (EOL) or EVI = EOLgefore 1nfo — EOLafter Info

where
EOL = chance of being wrong x cost of being wrong

Expected Value of Perfect Information (EVPI) = EOLgcfore Info

(EOL after is zero if information is perfect)

A slightly more complicated, but much more common and realistic,
method is the EOL calculation where your uncertainty is about a continuous
value, not just two extremes like “succeed” and “fail.” It’s more common to
need to compute the value of a measurement where the uncertain variable
has a range of possible values. The method for computing this information
value is not fundamentally different from how we computed the value of a
simple binary problem. We still need to compute an EOL.

The Value of Information for Ranges

In the ad example, suppose instead of expressing the results as only two
possible outcomes, the results are a range of possible values—a much more
realistic model. A calibrated expert in marketing was 90% certain that the
sales directly resulting from this ad campaign could be anywhere from
100,000 units to 1 million units. However, we have to sell at least a certain
amount to make this ad campaign break even. The risk is that we don’t sell
enough to make it worthwhile.

Let’s say that given our gross margin we make $25 per unit sold so that
we would have to sell at least 200,000 units to break even on a $5 million
campaign. Anything less than 200,000 units sold means the campaign is a
net loss, but more so as we drop farther below this point. If we sell exactly
200,000, we neither lose nor gain. If we didn’t sell any, we would have lost
the cost of the ad campaign, $5 million. (You might say the business would
lose more than just the cost of the campaign, but let’s keep it simple.) In
this situation, what is the value of reducing uncertainty about the effect of
the campaign?
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Threshold: The farther
below this point, the
higher the loss

For each increment below the
threshold, the EOL is computed
(a small probability times the loss
at that point)

50 100 150 200 250

Sales Attributed to New Ad Campaign (000s of units)

I— Total of all EOL increments —|
The value of perfect
information about the ad campaign

EXHIBIT 7.2 EOL “Slices” for Range Estimates

One way to compute EVPI for ranges like this is to take these five
steps:

1. Slice the distribution up into hundreds or thousands of small segments.
2. Compute the opportunity loss for the midpoint of each segment.

3. Compute the probability for each segment.

4. Multiply the opportunity loss of each segment times its probability.

5. Total all the products from step 4 for all segments.

The best way to do this is to make a macro in Excel, or write some
software, that chops up the distribution into 1,000 or so slices, then make
the required calculation. Exhibit 7.2 illustrates that process.

To make it a little easier, I did most of the work for you. All you need
to do is use a couple of the following charts and perform some simple
arithmetic. As a prelude to this calculation, we need to decide which of the
upper and lower bounds on the 90% confidence interval (CD is the “best
bound” (BB) and “worst bound” (WB). Clearly, sometimes a bigger number
is better (e.g., revenue) and sometimes a smaller number is better (e.g.,
costs). In the ad campaign example, small is bad, so the WB is the 100,000
units and the BB is 1 million units. From this, we are going to compute a
value T'll call the Relative Threshold (RT). This quantity tells us where the
threshold sits relative to the rest of the range. See Exhibit 7.3 for a visual
explanation of RT.

We are going to use this value to compute EVPI in four steps:

1. Compute Relative Threshold: RT = (Threshold — WB)/(BB — WB). For
our example, the best bound is 1 million units, the worst bound is
100,000 units, and the threshold is 200,000 units, so RT = (200,000 —
100,000)/(1,000,000 — 100,000) = 0.11.
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EXHIBIT 7.3 Example of the Relative Threshold

2. Locate the RT in the vertical axis of Exhibit 7.4 (next page).

3. Look directly to the right of the RT value and you will see two sets of
curves—one for normal distributions on the left and one for uniform
distributions on the right. Because our example is a normal distribution,
find the point on the curve for normal distributions that is directly to
the right of our RT value. I will call this value the Expected Opportunity
Loss Factor (EOLF). Here our EOLF is 15.

4. Compute EVPI as: EVPI = EOLF/1000 x OL per unit x (BB — WB). Our
example has an opportunity loss per unit of $25. This gives an EVPI =
15/1000 x 25 x (1,000,000 — 100,000) = $337,500. (See Exhibit 7.4.)

This calculation shows that a measurement (in this case, a forecast)
about the number of units that will be sold could theoretically be worth
as much as $337,500. This number is an absolute maximum and assumes a
measurement that eliminates uncertainty. Although eliminating uncertainty
is almost always impossible, this simple method provides an important
benchmark for how much we should be willing to spend.

The procedure for a uniform distribution is the same, except, of course,
we need to use the uniform distribution column of curves. In either the
uniform or the normal distribution case, some important caveats should be
understood. This simple method applies only to linear losses. That is, for
each unit we undershoot the threshold by, we lose a fixed amount—$25
in our example. If we plotted the loss against the units sold, it would
be a straight line. That’s linear. But if the loss accelerated or decelerated
in some way, the EOLF chart may not be a very close estimate. For ex-
ample, if we are uncertain about a compounding interest rate, the loss
we have below whatever threshold we define would not go up like a
straight line.
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*RT (Threshold — Worst Bound)/(Best Bound — Worst Bound);
see Exhibit 7.2 for more detail.

EXHIBIT 7.4 Expected Opportunity Loss Factor Chart

It's also important to note that if the normal distribution has to be
truncated in some way, or if any other distribution shape besides normal
or uniform is required, the chart may not be a close approximation. We
could say that it’s impossible to sell less than zero units. But we could also
say that it is possible that a real flop in an advertising campaign would not
only not sell more units but detract from existing sales—it has happened
before.

Value of Information Analysis on the Supplementary
Web Site

On the Web site www.howtomeasureanything.com, you can download
a detailed Excel-based calculator for VIA with examples from this book.
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If you have an important measure with a high information value, it
may be worth doing the extra math I described for breaking down the
distribution into a large number of slices. But instead of making such
a spreadsheet from scratch, you can download the Value of Information
Analysis spreadsheets and examples on the supplementary Web site, www.
howtomeasureanything.com.

The Imperfect World: The Value of Partial Uncertainty Reduction

The last example, for the Expected Value of Perfect Information, shows the
value of eliminating uncertainty, not just reducing it. The EVPI calculation
can be useful by itself, since at least we know a cost ceiling we should never
exceed to make the measurement. But often we have to live with merely
reducing our uncertainty, especially when we are talking about something
like sales forecasts from ad campaigns. At such times it would be helpful
to know not just the maximum we might spend under ideal conditions but
what a given real-life measurement (with real-life error remaining) should be
worth. In other words, we need to know the Expected Value of Information,
not the Expected Value of Perfect Information.

EVI refers to all information values, whether the information is perfect or
not. Sometimes, in situations where information is not perfect, the value of
information is variously referred to as Expected Value of Imperfect Informa-
tion (EVID or Expected Value of Sample Information (EVSD to differentiate
it from EVPIL But simply dropping the “perfect” suffices to generalize the
term to include something less than the elimination of uncertainty.

The EVI is, again, best computed with a bit more elaborate modeling,
but we can make some simple estimates. To do this, it’s helpful to get a
mental picture of several value of information concepts. Exhibit 7.5 shows
how the value of information and the cost of information change as certainty
is increased (i.e., as uncertainty is reduced).

In addition to EVI and EVPI, you will see the Expected Cost of Infor-
mation (ECD plotted. The ECI is simply how we expect to pay for a given
amount of information (i.e., uncertainty reduction). Remember, in the con-
text of decision analysis, the word “expected” always means “probability
weighted average.” So to compute the ECI, we consider the range of possi-
ble outcomes of a measurement, the cost of each, the expected uncertainty
reduction of each possible outcome, and then compute the weighted av-
erage of all costs and uncertainty reductions. That would seem a daunting
task, but Exhibit 7.5 indicates some simple rules of thumb to keep in mind.

Let’s consider how each of these relate to each other on this chart. The
general shape of the EVI curve could be called convex—meaning that it
bows upward (the midpoint of the curve is above a straight line drawn
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EXHIBIT 7.5 Expected Value of Information Curve

between its highest and lowest values). This means that the value of in-
formation tends to rise more quickly with small reductions in uncertainty
but levels off as we approach perfect certainty. With many measurements,
perfect certainty cannot be reached but, with enough effort, we can get very
close. However, no matter how much uncertainty we remove, the EVI can
never exceed the EVPIL

The amount of curvature of the EVI is determined by many factors,
including the type of distribution (normal, uniform, binary, etc.), the width
of the range, and the relative position of the threshold within the range.
Some EVIs are “flatter” but are curved at least a little. This curvature means
that a measurement that would reduce the uncertainty of the original range
by half would have an EVI of a little more than half the EVPI, a reduction
of 70% of the uncertainty would be worth a bit more than 70% of the
EVPI, and so on. For the ad campaign example, the procedure described in
Exhibits 7.3 and 7.4 should produce an EVPI of about $337,500. Therefore,
if you think you could reduce your uncertainty by half for a study that costs
$150,000, then you are justified to do the study (but probably not justified
by much). If you can do the study for $30,000, then it’s a bargain.

Another characteristic of the EVI curve to keep in mind is that it is pos-
sible to have uncertainty about the measured quantity but literally have no
uncertainty about the resulting decision. For example, if the calibrated ex-
pert wanted to give our range a uniform distribution of 100,000 to 1 million
units sold, the expert is saying, in effect, that there is no chance of selling
more than 1 million units or selling less than 100,000. If the threshold is
200,000 units and we can make a measurement that at least allows us to
move up the lower bound to some value greater than 200,000 units sold,
we will have eliminated the possibility of a loss. In examples like this, the
biggest jump in EVI is up to the point where the uncertainty reduction
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is just enough that it becomes possible to eliminate a chance of loss.
The difference in value between a measurement that could reduce un-
certainty by half and one that could reduce uncertainty by three-quarters
may be very small. Once we have eliminated the chance of a loss (or deter-
mined for certain that the loss will occur), any additional measurement has
no value.

Although this method for computing an EVPI with Exhibit 7.4 for nor-
mal distributions is just an approximation, it is still very useful. You can
estimate the EVI by recognizing EVPI as an absolute ceiling and keeping
the general shape of an EVI curve in mind. You may think that we are mak-
ing approximations upon approximations, but it often results in a “good
enough” measurement. Estimating the EVPI for a proposed measurement
already has some uncertainty of its own, so fine precision on the EVI is
not always that useful. Also, the variables that you should measure—those
that have high information values—tend to be the highest information value
by an extremely large margin. Often they are 10 or 100 times as much (or
more) as the value of the next most valuable measurements. In practice, the
estimation error for an EVI usually won’t come close to making a difference
in what you select for measurement

The ECI curve bends the other direction. If we call the direction of
the EVI curve convex, this is the “concave” direction. A straight line drawn
between its lowest and highest points will be above the midpoint on the
curve. Additional uncertainty reduction becomes more and more expensive
as we approach an uncertainty of zero. In the case of random sampling out
of some infinite population, our sample size would have to approach infinity
to eliminate uncertainty. However, the uncertainty at first tends to fall away
relatively quickly at the beginning of the measurement. The effects of the
first few observations relative to much more observation will be discussed
in more detail in Chapter 9. But for now, just know that each additional
decrease in uncertainty usually takes more effort than previous decreases in
uncertainty.

Knowing something about the monetary value of the information in a
measurement puts a new light on what is “measurable.” If someone says a
measurement would be too expensive, we have to ask “Compared to what?”
If a measurement that would just reduce uncertainty by half costs $50,000 but
the EVPI is $500,000, then the measurement certainly is not too expensive.
But if the information value is zero, then any measurement is too expensive.
Some measurements might have marginal information values—say, a few
thousand dollars; not enough to justify some formal effort at measurement
but a bit too much just to ignore. For those measurements, I try to think
of approaches that can quickly reduce a little uncertainty—say, finding a
related study or making a few phone calls to a few more experts.

With the EVI curve and the ECI curve, we also learn the value of itera-
tive measurements. While the EVI curve shows that the value of information
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levels off, the ECI curve takes off like a rocket as we approach the usually
unattainable state of perfect certainty. This fact tells us that we should nor-
mally think of measurement as iterative. Don’t try to hit it out of the ballpark
in the first attempt. Each measurement iteration can tell you something about
how—and whether—to conduct the next iteration.

Knowing the shape of the EVI and ECI curves also tells us that a typical
assumption about measurement is wrong. It is often assumed that if you
have a lot of uncertainty, you need a lot of data to reduce it. In fact, just the
opposite is true.

When you have a lot of uncertainty, you don’t need much new data to
tell you something you didn’t know before. An example from a workshop
I once conducted about the measurement of the effectiveness of health-
care issue awareness campaigns illustrates this point. I asked a workshop
participant for her 90% confidence interval for the percentage of teens in
the Chicago region who have been made aware of the cancer risks of in-
door tanning. Her estimate was 2% to 50%. I think the upper bound is very
optimistic, but she had a lot of uncertainty and she needed a wide range.
With a range this wide, how many teenagers would she have to survey to
reduce it significantly? And if her range was only 11% to 15%, how many
teenagers would she have to survey to significantly reduce that range? She
would have to survey far more people in the second case than in the first
to reduce uncertainty significantly. When anyone assumes we need a lot
of data to measure something—because it is uncertain—they are invariably
making this error.

A Common Measurement Myth

Myth: When you have a lot of uncertainty, you need a lot of data to
tell you something useful.

Fact: If you have a lot of uncertainty now, you don’t need much data
to reduce uncertainty significantly. When you have a lot of certainty
already, then you need a lot of data to reduce uncertainty significantly.

The Epiphany Equation: How the Value of Information
Changes Everything

In my consulting practice, I've been applying a slightly more sophisticated
version of the process I just described. By 1999, I had completed the very
quantitative Applied Information Economics analysis on about 20 major
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investments. At that time, all of my projects still were related only to infor-
mation technology (IT) investments. Each of these business cases had 40
to 80 variables, such as initial development costs, adoption rate, productiv-
ity improvement, revenue growth, and so on. For each of these business
cases, I ran a macro in Excel that computed the information value for each
variable. I used this value to figure out where to focus measurement efforts.

When I ran the macro that computed the value of information for each
of these variables, I began to see this pattern:

The vast majority of variables had an information value of zero. That is,
the current level of uncertainty about that variable was acceptable, and
no further measurement was justified (first mentioned in Chapter 3).
The variables that had high information values were routinely those
that the client never measured. In fact, the high-value variables often
were completely absent from previous business cases. (They excluded
chance of project cancellation or the risk of low user adoption.)

The variables that clients used to spend the most time measuring were
usually those with a very low (even zero) information value (i.e., it
was highly unlikely that additional measurements of the variable would
have any effect on decisions).

After organizing and evaluating all the business cases and their informa-
tion value calculations, I was able to confirm this pattern. I wrote an article
about my findings that was published in CIO Magazine.!

But, since then, I've applied this same test to another 40 projects, and
I found out that this effect is not limited to IT. In 2009, I published these
updated findings in a periodical for quantitative analysts called OR/MS To-
day.? 1 noticed the same phenomena arise in projects relating to research
and development, military logistics, the environment, venture capital, and
facilities expansion. The highest-value measurements almost always are a
bit of a surprise to the client. Again and again, I found that clients used to
spend a lot of time, effort, and money measuring things that just didn’t have
a high information value while ignoring variables that could significantly
affect real decisions. I quit calling the concept the “IT Measurement Inver-
sion” and renamed it the “Measurement Inversion.” In quite a few different
fields, the things that get measured just don’t matter as much as what is
ignored.

Furthermore, I often find that when clients measure something com-
pletely different—as a result of knowing the information value—many times
they view the actual findings as a great revelation. In other words, if you
want an epiphany, look at a high-value measurement you were previously
ignoring. Exhibit 7.6 summarizes these findings.
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Examples:
Low-Value, Time spent in an activity )
Typical Attendance to sales training ,3? %
Measurements Near-term costs of a project ? 5
o
Number of violations found in safety inspections o i)
> 2
Examples: = 2
L o E
High-Value Value of an activity = 5
> —+
Usually Ignored Effect of sales training on sales o g
Measurements Long-term benefits of a project B L%-])

Reduction in risk of catastrophic accidents

EXHIBIT 7.6 Measurement Inversion

Measurement Inversion

In a business case, the economic value of measuring a variable is usually
inversely proportional to how much measurement attention it usually
gets.

Apparently, our intuition about what to measure fails us more often than
not. Because most organizations lack a method for measuring the value of
conducting a measurement, they are almost guaranteed to measure all the
wrong things. It is not that things like project costs and hours per week on
some activity should not be measured, but an inordinate amount of attention
is given to them when there are much bigger uncertainties in other areas.

Why does the Measurement Inversion happen? First people measure
what they know how to measure or what they believe is easy to measure.
You probably know the old joke about the drunk looking for his watch in
the well-lit street, even though he knows he lost it in the dark alley. He
justifies this by saying the light is better out in the street. If the organization
is used to using, say, surveys to measure things, things that are best
measured with other methods probably don’t get measured as often. If the
organization is good at measuring things based on data-mining methods, it
will tend to measure only things that lend themselves to that approach.

My graduate quantitative methods professor used to quote Abraham
Maslow frequently by stating, “If your only tool is a hammer, then every
problem looks like a nail.” This seems to apply to quite a lot of businesses
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and government agencies. The measurement methods they use provide a
comfort level. Even though methods to measure something like the impact
of, for example, customer satisfaction on revenue are well developed in
some firms, other firms resist using those methods and instead focus on
lower-value measurements they feel more familiar with.

A second reason for the measurement inversion is that managers might
tend to measure things that are more likely to produce good news. After
all, why measure the benefits if you have a suspicion there might not be
any? Of course, that tends to be the thinking of people asking for money or
justifying their jobs, not the person who has to sign the checks. The solution
in this case is simple: Don’t let managers be the only ones responsible
for measuring their own performance. Those who approve and evaluate a
manager’s projects need their own source of measurements.

Finally, not knowing the business value of the information from a mea-
surement means people can’t put the difficulty of a measurement in context.
A measurement they feel is “too difficult” actually might be perceived as
practical if they understood that the information value was many times the
expected cost. A large consumer credit company once asked me for a pro-
posal on measuring the benefits of a worldwide IT infrastructure investment
that would exceed $100 million. After hearing more about the nature of the
problem, 1 estimated that the study would cost $100,000 or so. The com-
pany responded by saying that it needed to keep costs down to $25,000. (I
declined the business.) The original proposal was less than one-tenth of 1%
of the estimated size of a highly uncertain, risky investment. In some indus-
tries, a much less risky investment would get an even more detailed analysis
than what I proposed. Conservatively, the value of the information the study
would have produced would likely have been in the millions of dollars.

I call the formula for the value of information the “epiphany equation”
because it seems that to have a truly profound revelation, you almost always
have to look at something other than what you have been looking at in the
past. Being able to compute the value of information has caused organiza-
tions to look at completely different things—and doing so has frequently
resulted in a surprise that changed the direction of a major decision.

Measurement Inversion Example

A stark illustration of the Measurement Inversion for IT projects can
be seen in a large UK-based insurance client of mine that was an avid
user of a software complexity measurement method called “function
points.” This method was popular in the 1980s and 1990s as a basis
of estimating the effort for large software development efforts. This

(continued)
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(Continued)

organization had done a very good job of tracking initial estimates,
function point estimates, and actual effort expended for over 300 IT
projects. The estimation required three or four full-time persons as
“certified” function point counters. This was by far the most deliberate
effort the company expended on measuring any aspect of proposed
software development projects.

But a very interesting pattern arose when I compared the function
point estimates to the initial estimates provided by project managers and
the final effort calculated by the time tracking system. The costly, time-
intensive function point counting did change the initial estimate but,
on average, it was no closer to the actual project effort than the initial
estimate. In other words, sometimes function point estimates improved
the initial estimate and sometimes they gave an answer that was farther
from the actual effort at the completion of the project. Not only was
this the single largest measurement effort in the IT organization, it liter-
ally added no value since it didn’t reduce uncertainty at all. Certainly,
more emphasis on measuring the benefits of the proposed projects—or
almost anything else—would have been money better spent.

Summarizing Uncertainty, Risk, and Information Value:
The First Measurements

Understanding how to measure uncertainty is key to measuring risk. Un-
derstanding risk in a quantitative sense is key to understanding how to
compute the value of information. Understanding the value of information
tells us what to measure and about how much effort we should put into
measuring it. Putting all of this data in the context of quantifying uncertainty
reduction is central to understanding what measurement is all about. They
are the three measurements we conduct prior to any other measurement.

Putting everything from this chapter together, we can come away with
a few new ideas. First, we know that the early part of any measurement
usually is the high-value part. Don’t attempt a massive study to measure
something if you have a lot of uncertainty about it now. Measure a little
bit, remove some uncertainty, and evaluate what you have learned. Were
you surprised? Is further measurement still necessary? Did what you learned
in the beginning of the measurement give you some ideas about how to
change the method? Iterative measurement gives you the most flexibility
and the best bang for the buck.
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Second, if you aren’t computing the value of a measurement, you are
very likely measuring some things that are of little or no value and ignoring
some high-value items. In addition, if you aren’t computing the value of
the measurement, you probably don’t know how to measure it efficiently.
You may even be spending too much or spending too little time measuring
something. You might dismiss a high-value measurement as “too expensive”
because you could not put the cost in context with the value.

Lessons from Computing the Value of Information

Value of Measurement Matters. If you don’t compute the value
of measurements, you are probably measuring the wrong things, the
wrong way.

Be Iterative. The highest-value measurement is the beginning of the
measurement, so do it in bits and take stock after each iteration.

Everything up to this point in the book is just “Phase 1” for measuring
those things often thought to be impossible to measure. We have taken
what might have been a very ambiguous concept and defined it in terms of
how it matters to us and how we observe it. We have measured uncertainty,
risk, and the value of information. Now we can get to the next step.

Interestingly, this is as far as the Department of Veterans Affairs went
with the IT security metrics project first mentioned back in Chapter 4. The
object of the project was just to figure out what to measure; actual mea-
surements would be carried out over the next several years. To the VA,
knowing the value of measurement was useful in itself since it provided the
framework for all future security metrics.

The next step for us is to go beyond just stating current uncertainty and
computing the value of measuring it. Now that we know what to measure
and about how much we can spend on the measurement, we can set out
to design a way to measure it.

Notes

1. Douglas Hubbard, “The IT Measurement Inversion,” CIO Enterprise Magazine,
April 15, 1999.

2. D. Hubbard and D. Samuelson, “Modeling without Measurements: How the De-
cision Analysis Culture’s Lack of Empiricisms Reduces Its Effectiveness,” OR/MS
Today (October 2009).
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CHAPTER 8

The Transition: From What to
Measure to How to Measure

f you've applied the lessons of the previous sections to your measurement

problem, you've defined the issue in terms of what decision it affects and
how you observe it, you've quantified your uncertainty about it, and you've
computed the value of additional information. All of that was really what
you do before you begin measuring. Now we need to figure out how to
reduce our uncertainty further—in other words, measure it.

It's time to introduce some concepts behind powerful and practical
empirical methods. Given the way we have defined measurement, the oft-
heard phrase “empirical measurement” is redundant. Empirical refers to the
use of observation as evidence for a conclusion. (You might also hear the
redundant phrase “empirical observation.”) “Empirical methods” are formal,
systematic approaches for making observations to avoid or at least reduce
certain types of errors that observations (and observers) are like likely to
have. And observation is not limited to sight, although this is a commonly
assumed notion. Observation may not even be direct; it may be augmented
by the use of measurement instruments. This is, in fact, almost always the
case in the modern physical sciences.

But we are focusing on those things that are often considered to be
immeasurable in business. Fortunately, the approach to addressing many
of these issues does not involve the most sophisticated methods. It's worth
restating that the objective for this book is to show that many of the things
a manager might consider immeasurable are actually measurable. The only
question is whether they are important enough to measure (e.g., had a high
information value relative to the cost of measurement).

A few relatively simple methods will suffice to measure most of these
issues. The real obstacles to measurement, as we are discovering, are mostly
conceptual, not the lack of understanding of dozens of much more compli-
cated methods. After all, in those areas where fairly sophisticated methods
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are used, there is little debate about whether the object of measurement is
measurable. Such sophisticated measurement methods were developed pre-
cisely because someone understood that the object was measurable. Why
write a two-volume treatise on quantitative clinical chemistry, for example,
if both the author and the targeted readers didn’t assume from the beginning
that the topic is entirely measurable?

I will leave it to others to describe specialized quantitative methods
for specific scientific disciplines. You picked up this book because you are
unclear how other, “softer” topics can be treated with rigor.

In this chapter, we will ask a few questions so that we might be able
to determine the appropriate category of measurement methods. Those
questions are:

What are the parts of the thing we’re uncertain about? Decompose the
uncertain thing so that it is computed from other uncertain things.
Houw has this (or its decomposed parts) been measured by others? Chances
are, you're not the first to encounter a particular measurement prob-
lem, and there may even be extensive research on the topic already.
Reviewing the work of others is called “secondary research.”

How do the “observables” identified lend themselves to measurement?
You've already answered how you observe the thing. Follow through
with that to identify how you observe the parts you identified in the
first item above. And secondary research may already answer this
for you.

How much do we really need to measure it? Take into account the
previously computed current state of uncertainty, the threshold, and
value of information. These are all clues that point toward the right
measurement approach.

What are the sources of error? Think about how observations might be
misleading.

What instrument do we select? Based on your answers to the previous
questions, identify and design a measurement instrument. Once again,
secondary research may provide guidance.

With these questions in mind, it is time to discuss how tools are used
for measurement.

Tools of Observation: Introduction to the Instrument
of Measurement

The names we use for things and how those names change throughout his-
tory reveal a lot about how our ideas about them have changed. The scien-
tific instrument is a good example of this. Prior to the Industrial Revolution,
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especially during the European Renaissance, scientific instruments were of-
ten called “philosophical engines.” They were devices for answering what
were the “deep” questions of the time. Galileo used a pendulum and an
inclined plane down which he would roll balls to measure the acceleration
due to gravity. (The story of him dropping weights from the Leaning Tower
of Pisa might be fiction.) Daniel Fahrenheit’s mercury thermometer quan-
tified what was previously considered the “quality” of temperature. These
devices revealed not just a number but something fundamental about the na-
ture of the universe the observers lived in. Each one was a keyhole through
which some previously secret aspect of the world could be observed.

By the time of the industrialist inventors like Thomas Edison and Alexan-
der Graham Bell in the later nineteenth century, research and development
had become a mass-production business. Prior to this time, instruments were
often made to specification for an individual; by the time of Edison and Bell,
devices were being produced uniformly and in large quantities. Scientific
instruments started to become much more utilitarian. While the gentlemen
philosophers of the natural world might have displayed their new micro-
scopes alongside expensive art, the microscopes used by the industrialist
inventors were fit for display only in laboratories that, by today’s standards,
would almost be considered sweatshops. Perhaps not surprisingly, it was at
this time that much of the public began to perceive science and scientific
observation as a bit less of a fanciful pursuit of deep knowledge and more
like drudgery.

Even today, for many people, a measurement instrument generally
connotes a device—perhaps a complicated-looking piece of electronic
equipment—designed to quantify some obscure physical phenomenon,
such as a Geiger counter measuring radiation or a scale measuring weight.
Actually, the term “instrument” is used much more broadly by many people
in different fields. In education assessment, for example, researchers call a
survey, a test, or even an individual question an instrument. And that is a
legitimate a use of the term.

The measurement instrument, like any tool, gives an advantage to the
user. The simple mechanical tool gives an advantage like leverage for the
human muscle by multiplying the force it can exert. Likewise, the measure-
ment instrument enhances the human senses by detecting things we cannot
detect directly. It also can aid reasoning and memory by doing quick calcula-
tions and storing the result. Even a particular experimental method arguably
aids human perception and in this sense is itself a measurement instrument.
If we want to know how to measure anything, it is in this broadest sense
that we need to use the term.

Part of the solution for this initial lack of imagination about measure-
ment instruments may be to try to recapture the fascination Galileo and
Fahrenheit had for observing the “secrets” of their environment. They didn’t
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think of devices for measurement as complex contraptions to be used by
esoteric specialists in arcane research. The devices were simple and obvi-
ous. Nor were they, like some managers today, dismissive of instruments
because they had limitations and errors of their own. Of course they have
errors. The question is “Compared to what?” Compared to the unaided hu-
man? Compared to no attempt at measurement at all? Keep the purpose
of measurement in mind: uncertainty reduction, not necessarily uncertainty
elimination.

Instruments generally have six advantages. They don’t need to have all
the advantages to qualify as instruments; any combination will suffice. Often
even one advantage is an improvement on unaided human observation.

1. Instruments detect what you can’t detect. A voltmeter detects voltage
across a circuit, a microscope magnifies, a cloud chamber shows the
trails of subatomic particles. This ability is what is most commonly
thought of in relation to an instrument, but it is overemphasized.

2. Instruments are more consistent. Left to their own devices, humans are
very inconsistent. An instrument, whether it is a scale or a customer
survey, is generally more consistent.

3. Instruments can be calibrated to account for error. Calibration is the
act of measuring something for which you already know the answer
to test not the object of measurement but the instrument itself. We
might calibrate a scale by placing on it a weight we know to be exactly
1 gram. We calibrated your ability to assess odds by asking questions
where the answer was already known. In this way, we know what the
error is for a proper instrument.

An instrument often includes a method for offsetting a particular
error, which is often called a “control.” A controlled experiment, for
example, compares the thing being measured to some baseline. If you
want to know if a new sales force automation system improves repeat
business, you need to compare it to customers and sales reps who aren’t
using the system. Perhaps some sales reps use it more than others or
perhaps the rollout has not gone to every region or product line. Using
a control group allows for comparisons between those using and those
not using the new system (more on this in the next chapter).

4. Instruments deliberately don’t see some things. Instruments are useful
when they ignore factors that bias human observations. For example,
removing names from essay tests graded by teachers removes the pos-
sible bias a teacher might have about some students. In clinical research
studies, neither doctors nor patients know who is taking a drug and who
is taking a placebo. This way, patients cannot bias their experience and
doctors cannot bias their diagnosis.
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5. Instruments record. The image of the old electrocardiograph machine
spinning out long ribbons of paper displaying the activity of the heart
is a good example of how the instrument is a recording tool. Of course,
today the record is often entirely electronic. Instruments don’t rely on
selective and faulty human memory. Gamblers, for example, routinely
overestimate their skill because they don't really keep track of their
progress. The best measure of their progress is the drop in cash in their
bank accounts.

6. Instruments take a measurement faster and cheaper than a human. Tt
could be possible to hire enough people to physically count inventory
every hour of every day in a large grocery store. But point-of-sale scan-
ners do it more cheaply. A state trooper could compute highway speeds
with a stopwatch and distance markers, but a radar gun would give the
answer before the speeder got away and give it more accurately. If
an instrument does nothing else, cost reduction alone could be reason
enough to use it.

According to these criteria, a shepherd who counts sheep using beads
on a rope is using an instrument. The string is calibrated, it records, and
without it the shepherd would probably make more errors. Sampling pro-
cedures and experimental approaches themselves are instruments and are
often referred to in that way even if they do not use any mechanical or
electronic devices. Some would question the value of broadening this defi-
nition. A customer survey, for example, doesn’t necessarily detect anything
humans can’t. But it should at least be consistent as well as calibrated. And
if it is a Web-based survey, it will be cheaper to conduct and easier to an-
alyze (more about this in Chapter 13). Those who would reject the idea of
a customer survey being a measurement instrument forget the whole point
of measurement. How uncertain would they be without the instrument?

There are so many measurement methods for so many types of mea-
surement challenges that no one book could address them all in detail. But
the abundance of available methods reassures us that no matter what the
measurement issue is, a well-developed solution exists. And even though
it is impractical to try to fit a complete measurement encyclopedia in this
book, broad basic categories of methods solve quite a few problems. Fur-
thermore, these methods can be used in combination to create a variety of
approaches to specific measurement problems.

In our resolve to measure anything, the “Four Useful Measurement
Assumptions” (mentioned in Chapter 3) are worth reiterating:

1. It's been done before—don’t reinvent the wheel.
2. You have access to more data than you think—it might just involve
some resourcefulness and original observations.
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3. You need less data than you think, if you are clever about how to
analyze it.
4. Additional data are probably more accessible than you first thought.

Decomposition

Some very useful uncertainty-reducing methods are technically not actual
measurements because they do not involve making new observations of the
world. But they are often a very practical next step in determining how to
measure something. Many times they can reveal that the estimator actually
knew more than he or she let on in the initial calibrated estimate. As Enrico
Fermi taught us, simply decomposing a variable into the parts that make it
up can be an enlightening first step. Decomposition involves figuring out
how to compute something very uncertain from other things that are a lot
less uncertain or at least easier to measure.

Decompose It

Many measurements start by decomposing an uncertain variable into
constituent parts to identify directly observable things that are easier to
measure.

In fact, most measurements in the empirical sciences are done exactly
like this: indirectly. For example, neither the mass of an electron nor the
mass of Earth is observed directly. Other observations are made from which
these values can be computed.

One example of the usefulness of decomposition is estimating the
cost of a big construction project. Your first calibrated estimate might be
$10 million to $20 million based on similar-size projects. However, when
you break your specific project down into several components and put a
range on each of those, you can end up with an aggregate range that is
narrower than your original range. You didn’t make any new observations.
You simply made a more detailed model based on things you already knew.
Furthermore, you may find that your big uncertainty is the cost of one par-
ticular item (e.g., the cost of labor in a particular specialty). This realization
alone brings you that much closer to a useful measurement.

Another example of decomposition as a step in measurement is a poten-
tial productivity improvement. Let’s say there is a new process or technology
that is expected to improve productivity, but the best estimate is that it will
improve productivity by 5% to 40% for a particular set of employees. Part
of the uncertainty for estimators comes from the fact that they are trying to
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approximate, in their heads, some other variables they don’t know firsthand.
They don’t know, for example, exactly how many people work in the area
that would be affected the most.

Measuring how many people work in the area seems like an obvious
and simple step in measurement. Yet those who insist that something cannot
ever be measured resist even this. In such cases, a facilitator can be a big
help. A facilitated discussion could go like this:

Facilitator: Previously you gave me a calibrated estimate of a 5% to 40%
productivity improvement for your engineers with this new engineering
document management software. Because this particular variable bad
the bighest information value for the business case of whether to invest
in the new software, we have to reduce our uncertainty further.

Engineer: That’s a problem. How can we measure a soft thing like
productivity? We don’t even track document management as an activity,
so we have no idea how much time we spend in it now.

Facilitator: Well, clearly you think that productivity will improve be-
cause there are certain tasks they will spend less time doing, right?

Engineer: I suppose so, yes.

Fagcilitator: What activities do engineers spend a lot of time at now that
they will spend much less time at if they used this tool? Be as specific as
possible.

Engineer: Okay. I guess they would probably spend less time searching
Jfor relevant documents. But that’s just one item.

Fagcilitator: Great, it’s a start. How much time do they spend at this
now per week, and how much do you think that time will be reduced?
Calibrated estimates will do for now.

Engineer: I'm not sure...l suppose I would be 90% confident the
average engineer spends between 1 bhour and 6 bours each week
Jjust looking for documents. Equipment specs, engineering drawings,
procedural manuals, and so on are all kept in different places, and
most are not in electronic form.

Facilitator: Good. How much of that would go away if they could sit
at their desks and do queries?

Engineer: Well, even when I use automated search tools like Google, 1
still spend a lot of time searching through irrelevant data, so automation
could not reduce time spent in searching by 100%. But I'm sure it would
go down at least by balf.

Fagcilitator: Does this vary for the type of engineer?
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Engineer: Sure. Engineers with management roles spend less time at
this. They depend on subordinates move often. However, engineers who
Jfocus on particular compliance issues bave to research lots of documents.
Various technicians also would use this.

Facilitator: Okay. How many engineers and technicians fall into each
of these categories, and bhow much time do they each spend in this
activity?

We go on in this way until we've identified a few different categories
of staff, each spending a different amount of time in document searching
and each with a different potential reduction in this time spent. The staff
members may also vary by how much they adopt the new technology and
other factors.

The previous dialog is actually a reconstruction of a specific conversa-
tion I had with engineers in a major U.S. nuclear power utility. During the
meeting, we also identified other tasks, such as distribution, quality control,
and the like, that might be reduced by document management systems. As
before, the time spent in each of these tasks varied by the type of engineer
or technician.

In short, part of the reason these engineers gave such a wide range for a
productivity improvement is that they were imagining all of these variances
among different types of engineers without explicitly breaking it down this
way. Once they broke it down, they found that some numbers were fairly
certain (e.g., the headcount for each engineer type, or the fact that some
types spend most or little of their time in this activity) and that the uncer-
tainty about the original number came primarily from one or two specific
items. If we found that they were more uncertain just about time spent repli-
cating or tracking down lost documents and then only for a certain class of
engineers, we would have a big clue about where to begin a measurement.

Decomposition effect: The phenomenon that the decomposition it-
self often turns out to provide such a sufficient reduction in uncertainty
that further observations are not required.

The 60 or more major risk/return analyses I've done in the past 16
years consisted of a total of over 4,000 individual variables, or an average
of a little over 60 variables per model. Of those, a little over 120 (about
2 per model) required further measurement according to the information
value calculation. Most of these, about 100, had to be decomposed further
to find a more easily measured component of the uncertain variable. Other
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variables offered more direct and obvious methods of measurement, for
example, having to determine the gas mileage of a truck on a gravel road
(by just driving a truck with a fuel-flow meter) or estimating the number of
bugs in software (by inspecting samples of code).

But almost a third of the variables that were decomposed (about 30) re-
quired no further measurement after decomposition. In other words, about
25% of the 120 high-value measurements were addressed with decompo-
sition alone. Calibrated experts already knew enough about the variable;
they just needed a more detailed model that more explicitly expressed the
detailed knowledge they had.

Most of those variables that were decomposed had one or more of
their components measured; for example, as part of a larger productivity
improvement measurement, a survey was administered to one group of
people to measure time spent on a specific activity. For these variables,
decomposition was one critical step in understanding how to learn more
about the thing being analyzed. The entire process of decomposition itself
is a gradual conceptual revelation for those who think that something is im-
measurable. Like any engineer who faces the initially daunting task of how
to build a suspension bridge in a way that has never been done before,
decomposition addresses any measurement problem systematically, identi-
fying its component parts. And, like the bridge engineer, this analysis of
parts at each step redefines and refines the nature of the problem we face.
The decomposition of an “immeasurable” variable is an important step to-
ward measurement and sometimes is a sufficient uncertainty reduction itself.

Secondary Research: Assuming You Weren't the First
to Measure It

The standard approach to measurement in business, it seems, is for some
smart people to start with the assumption that, being smart, they themselves
will have to invent the method for a new measurement. In reality, however,
such innovation is almost never required.

Library research still does not seem to be an ingrained skill within
management even though it is considered a basic step in scientific inquiry.
But it has gotten a lot easier. Almost all my research now starts with the
Internet. No matter what measurement problem I'm attempting to resolve,
I start by doing homework with Google and Yahoo. Then, of course, I still
usually end up in the library, but with more direction and purpose.

There are just a few tricks in using the Internet for secondary research.
If you are looking for information that has been applied to measurement
methods, you will probably find that most Internet searching is unproductive
unless you are using the right search terms. It takes practice to use Internet
searches effectively, but these tips should help.



128 Measurement Methods

If I'm really new to a topic, I don’t start with Google. 1 start with
Wikipedia.org, the online collaborative encyclopedia. Wikipedia con-
tains well over 3 million articles, and a surprising number cover busi-
ness and technology topics that might be considered too obscure for
traditional encyclopedia sets. A good article usually includes links to
other sites, and controversial topics tend to have lengthy discussions
attached so you can decide for yourself what information to accept.
But let the reader beware. Anyone can post information on Wikipedia,
almost all posts are under pseudonyms and there is “vandalism” of
articles. Treat Wikipedia as a starting point, not a hard source.

Use search terms that tend to be associated with research and quan-
titative data. If you need to measure “software quality” or “customer
perception,” don’t just search on those terms alone—you will get mostly
fluff. Instead, include terms like “table,” “survey,” “control group,” “cor-
relation,” and “standard deviation,” which would tend to appear in more
substantive research. Also, terms like “university,” “PhD,” and “national
study” tend to appear in more serious (less fluffy) research.

Think of Internet research in two levels: search engines and topic-specific
repositories. The problem with using powerful search engines like
Google is that you might get thousands of hits, none of which is
relevant. But try searching specifically within industry magazine Web
sites or online academic journals. If I'm curious about macroeconomic
or international analysis, I'll go straight to government Web sites like
the Census, Department of Commerce, even the Central Intelligence
Agency. (The CIA World Fact Book is my go-to place for a variety
international statistical data.) These will give fewer but mostly likely
more relevant hits.

Try multiple search engines. Even the seemingly all-powerful Google
seems to miss a few items I find quickly when I use other engines. I like
to use clusty.com, bing.com, and yahoo.com to supplement searches
on Google.

If you find marginally related research that still doesn’t directly address
your topic of interest, be sure to read the bibliography. The bibliog-
raphy is sometimes the best method for branching out to find more
research.

The Basic Methods of Observation: If One Doesn’t Work,
Try the Next

Describing in detail how you see or detect the proposed object of measure-
ment is a useful way to begin to describe a measurement method. If you
have any basis for the belief that the object even exists, you are observ-
ing it in some way. If someone claims customer satisfaction will increase
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significantly if we can only reduce call-waiting time, the person must have
some reason for believing it. Have there been some complaints? Have there
been downward trends in customer satisfaction as the company has grown?
Measurements are almost always performed to test the truth of some idea,
and those ideas don’t just come from a vacuum.

If you've identified your uncertainty, identified any relevant thresholds,
and computed the value of information, you’ve already identified something
that is observable in principle. Consider the following four questions about
the nature of the observation. This is a sort of cascade of empirical methods.
If the first approach doesn’t work, go to the next, and so on. These aren’t
in any particular order, but you will probably find that for some situations,
it’s best to start with one and then move to the others.

1. Does it leave a trail of any kind? Just about every imaginable phe-
nomenon leaves some evidence that it occurred. Think like a forensic
investigator. Does the thing, event, or activity that you are trying to
measure lead to consequences that themselves have a trail of any kind?
Example: Longer waits on customer support lines cause some customers
to hang up. This has to cause at least some loss of business, but how
much? Did they hang up because of some unrelated reason on their
end or out of frustration from waiting? People in the first group tend to
call back; people in the second group tend not to. If you can identify
even some of the customers who hang up and notice that they tend
to purchase less, you have a clue. Now can you find any correlation
between customers who hung up after long waits and a decrease in
sales to that customer? (See “Example for Leaving a Trail.”)

2. If the trail doesn’t already exist, can you observe it directly or at least a
sample of it? Perhaps you haven’t been tracking how many customers
in a retail parking lot have out-of-state license plates, but you could
look now. And even though staking out the parking lot full time is
impractical, you can at least count license plates at some randomly
selected times.

3. If it doesn’t appear to leave bebind a detectable trail of any kind, and
direct observation does not seem feasible without some additional aid,
can you devise a way to begin to track it now? If it hasn’t been leaving a
trail, you can “tag” it so it at least begins to leave a trail. One example
is how Amazon.com provides free gift wrapping in order to help track
which books are purchased as gifts. At one point Amazon was not
tracking the number of items sold as gifts; the company added the
gift-wrapping feature to be able to track it. Another example is how
consumers are given coupons so retailers can see, among other things,
what newspapers their customers read.

4. If tracking the existing conditions does not suffice (with either existing or
newly collected data), can the phenomenon be “forced” to occur under
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conditions that allow easier observation (i.e., an experiment)? Example:
If a retail store wants to measure whether a proposed returned-items
policy will detrimentally affect customer satisfaction and sales, try it
in some stores while holding others unchanged. Try to identify the
difference.

Some Basic Methods of Observation

m Follow its trail like a clever detective. Do forensic analysis of data
you already have.

m Use direct observation. Start looking, counting, and/or sampling if
possible.

m If it hasn’t left any trail so far, add a “tracer” to it so it starts leaving
a trail.

m [f you can’t follow a trail at all, create the conditions to observe it
(an experiment).

These methods apply regardless of whether this is a measurement of
something that is occurring now (current sales due to customer referral) or a
forecast (the expected improvement in customer referrals due to some new
product feature, improvement in customer service, etc.). If it is something
that describes a current state, the current state has all the information you
need to measure it. If the measurement is actually a forecast, consider what
you have observed already that gives you any reason to expect improvement
change. If you can’t think of anything you ever observed that causes you to
have that expectation, why is your expectation justified at all?

And remember that in order to detect a trail, add a tracer/tag, or conduct
an experiment, you need to observe only a few in a random sample. Also
remember that different elements of your decomposition may have to be
measured differently. Don’t worry just yet about all of the problems that
each of these approaches could entail. Just identify whichever approach
seems the simplest and most feasible for now.

Example for Leaving a Trail

The Value of Faster Pickup of Customer Calls

A large European paint supplies distributor asked me how to mea-
sure the impact of network speed on sales, since the network affected
how quickly inbound calls could be answered. Since the PBX phone
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system kept logs of calls and hang-ups while on hold, and since the
network kept a history of its utilization levels (and, therefore, response
time), I recommended cross-referencing the two data sets. This showed
that hang-ups increased when demand on the network increased. The
company also looked at past situations where the network was slower
because of other use, not increased use by customer service, as well as
the sales history by day. Altogether, the company was able to isolate
the difference in sales that was due just to slower network speed.

Measure Just Enough

Chapter 7 reviewed how to compute the value of information for a particular
decision. The uncertainty, thresholds, and information value you determined
say a lot about what measurement method you really need. If the informa-
tion value of knowing whether your customers think your product quality
has improved with a new manufacturing process (e.g., the “new” beverage
formulation or the “classic” beverage formulation) is a couple of thousand
dollars, you can’t justify a two-month pilot market or even a major blind
taste test. But if the information value is in the range of millions of dollars
(which is more likely if this is the product of even a medium-size company),
we should not feel daunted by a study that might cost $100,000 and lasts a
few weeks. Keeping the information value in mind along with the threshold,
the decision, and current uncertainty provides the purpose and context of
the measurement.

The information value puts an upper limit on what you should be
willing to spend even theoretically. But the best measurement expenditure
is probably far below this maximum. As a ballpark estimate, I shoot for
spending about 10% of the Expected Value of Perfect Information (EVPD
on a measurement and sometimes even as low as 2%. (This is about the
least amount you should consider.) T use this estimate for three reasons.

1. The EVPI is the value of perfect information. Since all empirical methods
have some error, we are only shooting for a reduction in uncertainty,
not perfect information. So the value of our measurement will probably
be much less than the EVPIL

2. Initial measurements often change the value of continued measurement.
If the first few observations are surprising, the value of continuing the
measurement may drop to zero. This means there is a value in iterative
measurement. And since you always have the option of continuing a
measurement if you need more precision, there is usually a manageable
risk in underestimating the initial measurement effort.
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3. The information value curve is usually steepest at the beginning. The
first 100 samples reduce uncertainty much more than the second 100.
Finally, the initial state of uncertainty tells you a lot about how to
measure it. Remember, the more uncertainty you started out with, the
more the initial observations will tell you. When starting from a position
of extremely high uncertainty, even methods with a lot of inherent error
can give you more information than you had before.

Consider the Error

All measurements have error. As with all problems, the solution starts with
the recognition that we have the problem—which allows us to develop
strategies to compensate, at least partially. Those who tend to be easily
thwarted by measurement challenges, however, often assume that the exis-
tence of any error means that a measurement is impossible. If that was true,
virtually nothing would ever have been measured in any field of science.
Fortunately, for the scientific community and for the rest of us, it's not.
Enrico Fermi can rest easy.

Scientists, statisticians, economists, and most others who make empirical
measurements separate measurement error into two broad types: systemic
and random. Systemic errors are those that are consistent and not just ran-
dom variations from one observation to the next. For example, if the sales
staff routinely overestimates next quarter’s revenue by an average of 50%,
that is a systemic error. The fact that it isn’t always exactly 50% too optimistic,
but varies, is an example of random error. Random error, by definition, can’t
be individually predicted but falls into some quantifiable patterns that can
be computed with the laws of probability.

Systemic error and random error are related to the measurement con-
cepts of precision and accuracy. “Precision” refers to the reproducibility and
conformity of measurements, while “accuracy” refers to how close a mea-
surement is to its “true” value. While the terms “accuracy” and “precision”
(as well as “inaccuracy” and “imprecision”) are used synonymously by most
people, to measurement experts they are clearly different.

A bathroom scale that is calibrated to overstate or understate weight
(as some people apparently do, deliberately) could be precise but inaccu-
rate. It is precise because if the same person stepped on the scale several
times within an hour—so that the actual weight doesn’t have a chance to
change—the scale would give the same answer very consistently. Yet it is
inaccurate because every answer is always, say, eight pounds over. Now
imagine a perfectly calibrated bathroom scale in the bathroom of a mov-
ing motor home. Bumps, acceleration, and hills causes the readings on the
scale to move about and give different answers even when the same person
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steps on it twice within one minute. Still, you would find that after a num-
ber of times on the scale, the answers average out to be very close to the
person’s actual weight. This is an example of fairly good accuracy but low
precision. Calibrated experts are similar to the latter. They may be incon-
sistent in their judgments, but they are not consistently overestimating or
underestimating.

Quick Glossary of Error

Systemic error/bias: An inherent tendency of a measurement
process to favor a particular outcome; a consistent bias.

Random error: An error that is not predictable for individual ob-
servations; not consistent or dependent on known variables
(although such errors follow the rules of probability in large
groups).

Accuracy: A characteristic of a measurement having a low sys-
temic error—that is, not consistently over- or underestimating a
value.

Precision: A characteristic of a measurement having a low random
error; highly consistent results even if they are far from the true
value.

To put it another way, precision is low random error, regardless of
the amount of systemic error. Accuracy is low systemic error, regardless
of the amount of random error. Each of the types of error can be ac-
counted for and reduced. If we know the bathroom scale gives an answer
eight pounds higher than the true value, we can adjust the reading accord-
ingly. If we get highly inconsistent readings with a well-calibrated scale,
we can remove random error by taking several measurements and com-
puting the average. Any method to reduce either of these errors is called
a “control.”

Random sampling, if used properly, is itself a type of control. Random
effects, while individually unpredictable, follow specific predictable patterns
in the aggregate. For example, I can’t predict a coin flip. But I can tell
you that if you flipped a coin 1,000 times, there will be 500+/—26 heads.
(We'll talk about computing the error range later.) It is often much harder
to compute an error range for systemic error. Systemic errors—like those
from using biased judges to assess the quality of a work product or using
an instrument that constantly underestimates a quantity—don’t necessarily
produce random errors that can be quantified probabilistically.
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If you had to choose, would you prefer the weight measurement from an
uncalibrated but precise scale with an unknown error or from a calibrated
scale on a moving platform with highly inconsistent readings each time
you weigh yourself? T find that, in business, people often choose precision
with unknown systemic error over a highly imprecise measurement with
random error. For example, to determine how much time sales reps spend
in meetings with clients versus other administrative tasks, they might choose
a complete review of all time sheets. They would generally not conduct a
random sample of sales reps on different days at different times. Time
sheets have error, especially those completed for the whole week at 5 p.m.
on Friday in a rush to get out the door. People underestimate time spent on
some tasks, overestimate time spent on others, and are inconsistent in how
they classify tasks.

Small Random Samples versus Large
Nonrandom Samples

The Kinsey Sex Study

A famous debate about small random versus large nonrandom sam-
ples concerned the work of Alfred Kinsey in the 1940s and 1950s regard-
ing sexual behavior. Kinsey’s work was both controversial and popular
at the time. Funded by the Rockefeller Foundation, he was able to con-
duct interviews of 18,000 men and women. But they were not exactly
random samples. He tended to meet people by referral and tended
to sample everyone in a specific group (a bowling league, a college
fraternity, a book club, etc.). Kinsey apparently assumed that any error
could be offset by a large enough sample. But that’s not how most sys-
temic error works—it doesn’t “average out.” John W. Tukey, a famous
statistician who was retained by the same Rockefeller Foundation to re-
view Kinsey’s work, was quoted as saying: “A random selection of three
people would have been better than a group of 300 chosen by Mr. Kin-
sey.” In another version of this quote, he was said to prefer a random
sample of 400 to Kinsey’s 18,000. If the first quote is Tukey’s, he may
have exaggerated, but not by much. Tukey meant that the groups Kin-
sey sampled were often very close to homogeneous. Therefore, these
groups may have counted as something closer to one random sam-
ple, statistically speaking. In the second version of the quote, Tukey is
almost certainly correct: A random sample of 400 will have an easily
quantifiable error, and that error may actually be much less than the
systemic error of 18,000 poorly chosen samples.
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If a complete review of 5,000 time sheets (say, 100 reps for 50 weekly
time sheets each) tells us that sales reps spend 34% of their time in direct
communication with customers, we don’t know how far from the truth it
might be. Still, this “exact” number seems reassuring to many managers.
Now, suppose a sample of direct observations of randomly chosen sales
reps at random points in time finds that sales reps were in client meetings
or on client phone calls only 13 out of 100 of those instances. (We can
compute this without interrupting a meeting by asking as soon as the rep is
available.) As we will see in Chapter 9, in the latter case, we can statistically
compute a 90% CI to be 7.5% to 18.5%. Even though the random sampling
approach gives us only a range, we should prefer its findings to the census
audit of time sheets. The census of time sheets gives us an exact number,
but we have no way to know by how much and in which direction the time
sheets err.

The error you can’t count on averaging out—systemic error—is also
called a “bias.” The list of types of biases seems to grow with almost every
year of research in decision psychology or empirical sciences in general.
But there are three big biases that you need to control for: expectancy,
selection, and observer biases.

A Few Types of Observation Biases

Expectancy bias: Seeing what we want to see. Observers and
subjects sometimes, consciously or not, see what they want.
We are gullible and tend to be self-deluding. Clinical trials
of new drugs have to make sure that subjects don’t actually
know whether they have taken the real drug or a placebo.
This is the previously mentioned blind test. When those who
are taking the real drug are hidden from the doctors as well
as the patients, this is a double-blind test. The approach I
recommended for the Mitre Corporation example in Chapter 2
is an example of a blind test.

Selection bias: Even when attempting randomness in samples, we
can get inadvertent nonrandomness. If we sample 500 voters
for a poll and 55% say they will vote for candidate A, it is fairly
likely—98.8%, to be exact—that candidate A actually has the
lead in the population. There is only a 1.2% chance that a ran-
dom sampling could have just by chance chosen more voters

(continued)
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(Continued)

for A if A wasn’t actually in the lead. But this assumes the sam-
ple was random and didn’t tend to select some types of voters
over others. If the sample is taken by asking passersby on a
particular street corner in the financial district, you are more
likely to get a particular type of voter even if you “randomly”
pick which passersby to ask.

Observer bias (or the Heisenberg and Hawthorne bias): Sub-
atomic particles and humans have something in common. The
act of observing them causes them both to change behavior. In
1927, the physicist Werner Heisenberg derived a formula show-
ing that there is a limit to how much we can know about a
particle’s position and velocity. When we observe particles, we
have to interact with them (e.g., bounce light off them), caus-
ing their paths to change. That same year a research project
was begun at the Hawthorne Plant of the Western Electric
Company in Illinois. Initially led by Professor Elton Mayo from
the Harvard Business School, the study set out to determine
the effects of the physical environment and working condi-
tions on worker productivity. Researchers altered lighting lev-
els, humidity, work hours, and so on in an effort to determine
under which conditions workers worked best. To their sur-
prise, they found that worker productivity improved no matter
how they changed the workplace. The workers were simply
responding to the knowledge of being observed; or perhaps,
researchers hypothesized, management taking interest in them
caused a positive reaction. Either way, we can no longer as-
sume observations see the “real” world if we don’t take care to
compensate for how observations affect what we observe. The
simplest solution is to keep observations a secret from those
being observed.

Choose and Design the Instrument

After decomposing the problem, placing one or more of the decomposed
parts in an observation hierarchy, aiming for “just good enough” uncertainty
reduction, and accounting for the main types of error, the measurement
instrument should be almost completely formed in your mind. Just answer-
ing the questions up to this point should have made some measurement
methods more apparent.
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Let's summarize how to identify the instrument.

1. Decompose the measurement so that it can be estimated from other
measurements. Some of these elements may be easier to measure, and
sometimes the decomposition itself will have reduced uncertainty.

2. Consider your findings from secondary research. Look at how others
measured similar issues. Even if their specific findings don’t relate to
your measurement problem, is there anything you can salvage from the
methods they used?

3. Place one or more of the elements from the decomposition in one or
more of the methods of observation: trails left bebind, direct observation,
tracking with “tags,” or experiments. Think of at least three ways you
detect it, and then follow its trail forensically. If you can’t do that, try a
direct observation. If you can’t do that, tag it or make other changes to
it so it starts leaving a trail you can follow. If you can’t do that, create
the event specifically to be observed (the experiment).

4. Keep the concept of “just enough” squarely in mind. You don’t need
great precision if all you need is more certainty that a productivity
improvement will be over the minimum threshold needed to justify a
project. Keep the information value in mind; a small value means little
effort is justified and a big value means you should think bigger about
the measurement method. Also, remember how much uncertainty you
had to begin with. If you were originally very uncertain, how much of
an observation do you really need to reduce the uncertainty?

5. Think about the errors specific to that problem. If it is a series of human
judges evaluating the quality of work, beware of expectation bias and
consider a blind. If you need a sample, make sure it is random. If your
observations themselves can affect outcome, find a way to hide the
observation from the subject.

Now, if you can’t yet fully visualize the instrument, consider these tips,
listed in no particular order. Some have been mentioned already, but all are
worth reviewing.

Work through the consequences. If the value you are seeking is sur-
prisingly high, what should you see? If the value is surprisingly low,
what should you see? In the example cited in Chapter 2, young Emily
reasoned that if the therapeutic touch specialists could do what they
claimed, they should at least be able to detect a human “aura.” For a
quality measurement problem, if quality is better, you probably should
see fewer complaints from customers. For a sales-related software ap-
plication, if a new IT system really helps salespeople sell better, why
would you see sales go down for those who use it more?
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Be iterative. Don’t try to eliminate uncertainty in one giant study. Start
making a few observations, and recalculate the information value. It
might have a bearing on how you continue measurement.

Consider multiple approaches. If one type of observation on one of the
elements in your decomposition doesn’t seem feasible, focus on an-
other. You have many options. If the first measurement method works,
great. But in some cases I've measured things three different ways,
after the first two were unenlightening. Are you sure you are explor-
ing all the methods available? If you can’t measure one variable in a
decomposition, can you measure another?

What's the really simple question that makes the rest of the measurement
moot? Again, Emily didn’t try to measure how well therapeutic touch
worked, just whether it worked at all. In the Mitre example discussed
earlier, T suggested the company determine if clients could detect any
change in the quality of research before it tried to measure a value
of the expected improvement in quality. Some questions are so basic
that it is possible that their answers could make more complicated
measurements irrelevant. What is the basic question you need to ask to
see if you need to measure any more?

Just do it. Don’t let anxiety about what could go wrong with measure-
ment keep you from just starting to make some organized observations.
Don’t assume you won'’t be surprised by the first few observations and
considerably reduce your uncertainty.

By now you should have a pretty good idea of what you need to observe
and, generally, how to observe it in order to make your measurement. Now
we can talk about some specific methods of observation in two general
categories: observations analyzed with “traditional” statistics and a method
called “Bayesian analysis.” Together, these two broad categories cover just
about all empirical methods applied to physics, medicine, environmental
studies, or economics. Although the traditional methods are by far the most
prevalent ones, the newer Bayesian analysis has some distinct advantages.



CHAPTER 9

Sampling Reality: How Observing
Some Things Tells Us about
All Things

1t is the mark of an educated mind to rest satisfied with the degree of
precision which the nature of the subject admits and not to seek exactness
where only an approximation is possible.

—Auristotle (384 B.c.—322 B.C.)

f you want 100% certainty about the percentage of defective bricks from

a kiln, you have to test all of them. Since testing the failure load of a brick
requires compressing it in a press and measuring the force under which it
cracks apart, this would require the destruction of every brick you make. If
you want to have most of the bricks left over to use or sell, you only get to
test a few bricks to learn something about all of them.

The group you want to learn about is the population, in this case, the
bricks produced. A test of every single item in a group you want to learn
about (e.g., testing every brick produced) is a census. Obviously, a census is
impractical for bricks, since you would have no bricks left when the census
is complete, but it is practical in other situations. A monthly inventory is
usually a census, and the balance sheet is a census of every asset and
liability. The U.S. Census tries to count every human being in the country,
although in reality it falls a bit short of this.

But lots of things are more like bricks than like accounting transactions.
There are a number of reasons it is impractical to test, track, weigh, or even
count every item in a population. But we can still reduce uncertainty by
looking at just some items from a population. Anything short of a complete
census of the population is a sample. In effect, sampling is observing just

139
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some of the things in a population to learn something about all of the things
in a population.

It might seem remarkable that looking at some things tells us anything
about things we aren’t looking at, but, in fact, this is most of what science
does. Experiments look at only some phenomena in a universe full of
phenomena. But when science discovers a “law,” it says that the law applies
to everything in that population, not just the few examples observed so far.

For example, the speed of light was determined with, literally, some
samples of light. And no matter what measurement method was used, it
had error. Therefore, scientists measured the speed of light more than once
to reduce this error. Each measurement is another sample. And yet the speed
of light is a universal constant that should apply to the light reflecting off
this page and hitting your eyes as well as the light sampled in a lab. Even
a census could be just a sample of a still larger population over time. For
example, a complete inventory is just one snapshot in time, as is a balance
sheet.

This point might be disconcerting to some who would like more cer-
tainty in their world, but everything we know from “experience” is just a
sample. We didn’t actually experience everything; we experienced some
things and we extrapolated from there. That is all we get—fleeting glimpses
of a mostly unobserved world from which we draw conclusions about all
the stuff we didn’t see. Yet people seem to feel confident in the conclusions
they draw from limited samples. The reason they feel this way is because
experience tells them sampling often works. (Of course, that experience,
too, is based on a sample.)

For someone who needs to review the material from first-semester col-
lege statistics, there are a lot of accessible statistics books. This book doesn’t
try to cover all of those topics. We focus instead on the most basic and
useful methods and include a bit on what standard statistics texts tend to
leave out or at least deemphasize. The limitations of statistics textbooks
are part of the problem for managers seeking solutions for measurement
challenges. The entire industry of statistical analysis seems unconcerned
with practical accessibility or the broader issue of how to measure the
“immeasurable.”

This chapter discusses some simple methods for drawing a lot of infor-
mation from a few samples. But unlike the books I first learned from, we will
start with some “intuition building” before we show any math, and the math
presented is as limited as possible. When we do get into how to compute
specific values, we emphasize quick estimates and simple tables and charts
over memorizing equations. Furthermore, every example in this chapter (as
well as most in this book) can be downloaded as spreadsheet examples
from the supplementary Web site, www.howtomeasureanything.com. Make
full use of that resource.
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Building an Intuition for Random Sampling:
The Jelly Bean Example

Here is a little experiment you can try. What is your 90% confidence interval
(CD for the weight, in grams, of the average jelly bean? Remember, we need
two numbers—a lower bound and an upper bound—ijust far apart enough
that you are 90% confident that the average weight of a jelly bean, in grams,
is between the bounds. Just like every other calibrated probability estimate,
you have some idea, regardless of how uncertain you feel about it. A gram,
by the way, weighs as much as 1 cubic centimeter of water (imagine a
thimble full of water). Write down your range before you go any further. As
explained in Chapter 5, be sure to test it with the equivalent bet, consider
some pros and cons for why the range is reasonable, and test each bound
against anchoring.

I have a typical bag of jelly beans—the type you can buy anywhere
candy is sold. I took such a bag and began sampling jelly beans. I put several
jelly beans one at a time on a digital scale. Now consider the following four
questions. Answer each one before you go to the next point.

1. Suppose I told you the weight of the first jelly bean I sampled was 1.4
grams. Does that change your 90% CI? If so, what is your updated 90%
CI? Write down your new range before proceeding.

2. Now I reveal that the next sample weighed 1.5 grams. Does that change
your 90% CI again? If so, what is your CI now? Write down this new
range.

3. Now I give you the results of the next three randomly sampled jelly
bean weights, for a total of 5 so far: 1.4, 1.6, and 1.1. Does that change
your 90% CI even further? If so, what is your 90% CI now? Again, write
down this new range.

4. Finally, T give you the results of the next three randomly sampled
weights of jelly beans, for a total of eight samples so far: 1.5, 0.9,
1.7. Again, does that change your 90% CI? If so, what is it now? Write
down this final range.

Your range usually should have gotten at least a little narrower each
time you were given more data. If you had an extremely wide range as a
first estimate (before you were told any sampling results), then even the
first sample would have significantly narrowed your range.

I gave this test to nine calibrated estimators and I got fairly consistent
results. The biggest difference among the estimators was how uncertain they
were about the initial estimate. The narrowest initial range (before sample
information was revealed) 1 to 3 grams for the average jelly bean, and the



142 Measurement Methods

widest was 0.5 to 50 grams, but most ranges were closer to the narrowest
ranges. As the estimators were given additional information, most reduced
the width of their range, especially those who started with very wide ranges.
The estimator who gave a range of 1 to 3 grams did not reduce the range
at all after the first sample. But the person who gave a range of 0.5 to 50
grams reduced the upper bound significantly, resulting in a range of 0.5 to
6 grams.

The true average of the population of this bag of jelly beans is close
to 1.45 grams per jelly bean. Interestingly, the ranges of the estimators
narrowed in on this value fairly quickly as they were given just a few
additional samples.

Exercises like this help you gain a sense of intuition about samples and
ranges. Asking calibrated estimators for subjective estimates without apply-
ing what some would call “proper statistics” is actually very useful and even
has some interesting advantages over traditional statistics, as we will soon
see. But first, let’s look at how most statistics texts handle small samples.

A Little about Little Samples: A Beer Brewer’s Approach

There is a way to compute the 90% CI for the jelly bean problem objectively,
without any reliance on calibrated estimators, using a method developed by
a beer brewer. This method is widely taught in basic statistics courses and
can be used for computing errors for samples sizes as small as two. In the
earliest years of the twentieth century, William Sealy Gosset, a chemist and
statistician at the Guinness brewery in Dublin, had a measurement problem.
Gosset needed a way to measure which types of barley produced the best
beer-brewing yields. Prior to that time, a method alternatively called the “z-
score” or “normal statistic” was developed to estimate a confidence interval
based on random samples—as long as there were at least 30 samples.
This method produces distributions in the shape of the normal distribution
discussed earlier. Unfortunately, Gosset did not have the luxury of sampling
a large number of batches of beer for each type of barley. But instead
of assuming he couldn’t measure it, he set out to derive a new type of
distribution for very small sample sizes.

By 1908, he had developed a powerful new method he called the
“t-statistic,” and he wanted to publish it. To guard against the loss of trade
secrets (a problem Guinness had previously experienced), the company for-
bade its employees from publishing anything about its business processes.
While Gosset valued his job, he apparently wanted to publish this idea more
than he needed immediate recognition. So Gosset published his t-statistic
under the pseudonym “Student.” Although the true author has been long
known, virtually all statistics texts call this the “student’s t-statistic.”
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The t-statistic is similar in shape to the normal distribution we discussed
previously. But for very small samples, the shape of the distribution is much
flatter and wider. The 90% CI computed with a student’s t-statistic is much
more uncertain (i.e., broader) than a normal distribution would indicate.
For sample sizes larger than 30, the shape of the t-distribution is virtually
the same as the normal distribution.

With either type of distribution, there is a relatively simple procedure
(compared to much of the rest of statistics methods) for computing the
90% CI of the average of a population. Some might find the procedure to
be unintuitive, and those familiar with the approach might find this to be a
trivial rehash of information available in statistics texts. The first group might
want to hold out for a much simpler solution (coming later in this chapter)
while the second group might just skim over this material. Aiming for readers
who consider themselves to be somewhere in the middle, I've opted to make
my explanation as simple as possible. Here is how we compute a 90% CI,
using the first five samples from the jelly bean example:

1. Compute the sample “variance.” As the name indicates, this is a way
of quantifying how much samples vary from one another using the
following steps—a through c. (This is a concept we’ll refer to more
often later.)

a. Compute the average of the samples:

1.44144+15+1.64+1.1D/5=1.4

b. Subtract this average from each of the samples and square the result
for each sample:

1.4-1.49%*=0, 1.4—1.49>=0, (1.5 — 1.4 = .01, etc.

c. Add all the squares and divide by 1 less than the number of samples:

O+0+.014+.04+.09/(5—1) =.035

2. Divide the sample variance by the number of samples and take
the square root of the result. In a spreadsheet we could write “=
SQRT(.035/5)” to get .0837.

(In statistics texts, this is called the “standard deviation of the esti-
mate of the mean.”)

3. Look up the t-stat in Exhibit 9.1, the simplified t-statistic table, next to
the sample size. Next to the number 5 is the t-score 2.13. Note that for
very large sample sizes, the t-score gets closer to the z-score (for the
normal distribution) of 1.645.

4. Multiply the t-stat by the answer from step 2: 2.13 x .0837 = .178. This
is the sample error in grams.
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EXHIBIT 9.1 Simplified t-Statistic
Pick the nearest sample size (or interpolate
if you prefer more precision).

Sample Size t-Score
2 6.31
3 2.92
4 2.35
5 2.13
6 2.02
8 1.89

12 1.80

16 1.75

28 1.70

Larger samples (z-score) 1.645

5. Add the sample error to the mean to get the upper bound of a 90% CI,
and subtract the same sample error from the mean to the lower bound:
upper bound = 1.4 + .178 = 1.578, lower bound = 1.4 — .178 = 1.222.

We get a 90% CI of 1.22 to 1.58 after just five samples. This same proce-
dure also gives us the answer for larger samples needed for the traditional
z-score. The only difference is that the z-score we need to compute a 90%
CI is always 1.645. (It doesn’t change further as sample size increases.)

Whether we initially estimated something with subjective methods or a
t-stat or z-stat, what matters is how well the approach works in reality. We
might call one method more “objective,” but even the subjective method
has an objectively measurable performance. So, are the calibrated estimators
who were given small sample data better or worse at estimating than using
this simple mathematical procedure?

In the experiment with the calibrated estimators and the jelly beans, the
estimators consistently gave wider ranges than what we would get if we
used the t-statistic, but often not by much. This means that doing a little
more math usually reduces error further than calibrated estimators alone.
After eight samples, the most conservative calibrated estimator had a range
of 0.5 to 2.4 grams while the most confident estimator gave a range of 1
to 1.7 grams. After the same number of samples, the t-statistic gives a 90%
CI of 1.21 to 1.57 grams, about the same as the five sample estimate but
considerably narrower than the narrowest range among the estimators.

But even though the uncertainty reduction according to the estimators
was conservative (not as narrow as it could have been), it was not irrational
and was still a significant reduction from the prior state of uncertainty. As we
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will see in Chapter 10, further studies bear out these findings. In summary,
we find:

® When you have a lot of uncertainty, a few samples greatly reduce it,
especially with relatively homogeneous populations.

® In some cases, calibrated estimators were able to reduce uncertainty
even with only one sample—which is impossible with the traditional
statistics we just discussed.

= Calibrated estimators are rational yet conservative. Doing more math
reduces uncertainty even further.

Statistical Significance: A Matter of Degree

Remember the information value chart in Chapter 7? Exhibit 7.5 showed
that the big payoff in information tends to be early in the information
gathering process. This is the point where the Expected Cost of Information
is small for an incremental reduction in uncertainty and the Expected Value
of Information increases quickly.

Exhibit 9.2 shows the average of relative reduction in uncertainty as
sample sizes increase by showing the 90% CI interval getting narrower with
each sample. Individual examples will, of course, depend on the data set,
but if you could get the average of all the possible sampling problems

Uncertainty reduces much faster on the first few
observations than you might think.

» With a few samples, there is still high uncertainty but...

O  100% - ...each new sample reduces uncertainty a lot and...

o
S 90% ClI + ...the first few samples reduce uncertainty the most
D A\ P . . .

° when initial uncertainty is high.
= \l\
©
< L
o « As number of samples increases,
= 0 \ the 90% CI gets much narrower
o but...
= — « ...each new sample reduces
E) / uncertainty only slightly and...
= « ...beyond about 30 samples,
% / you need to quadruple the
lz, —100% i i i . i i sample size to cut error by half.

0 5 10 15 20 25 30 35 40
Number of Samples

EXHIBIT 9.2 How Uncertainty Changes with Sample Size
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you could ever come across, the average of all of them would look like
this. It could have been the yields of brewed batches at Guinness, the time
spent in line by customers, or the shoe sizes of Nebraskans. Regardless of
the specific type of problem, you need a 90% CI for the average of the
population but, for some reason, you can sample only a few, not hundreds
or thousands. The reason could be economics, time constraints, or the
shyness of Nebraskans about having their feet measured.

The graph in Exhibit 9.2 looks something like a tornado on its side. The
curve on top is the upper bound of a 90% CI; the curve on the bottom is
the lower bound. On the extreme left of the chart we see that the upper
and lower bounds of a 90% CI tend to be far apart when the samples are
small but get narrower as the number of samples increases. With real data
from a specific example, such as the shoe sizes of Nebraskans, our 90%
CI would look like a much more jagged funnel as we tried to narrow the
CI with additional samples. It is even possible for an additional sample to
sometimes increase the size of the interval from the previous data set before
the next sample makes it narrower again. But, on average, the increasing
sample size will decrease the size of the interval. Exhibit 9.2 shows that
after just a few samples, the 90% CI is still wide, but narrows rapidly with
each new sample. Also note that while the 90% CI is much narrower at 30
samples, it wasn’t much narrower than at 20 or even 10 samples. In fact,
once you get to 30 samples, you have to quadruple the number of samples
(120) if you want the error to go down by half again. If you want only
one-quarter as much error as you have at 30 samples, you need 16 times as
many samples (480).

We may need only a very small number of samples to draw useful
conclusions about the rest of the unsampled population, especially if we
think the population is somewhat homogeneous. If we are taking a sample
to test for something completely homogeneous, like the DNA in someone’s
blood or octane levels in gasoline, we need only one sample from a person
or batch. However, if the samples vary a lot, such as the size of fish in a lake
or the time spent by employees dealing with PC problems, we generally
need more—sometimes a lot more. But perhaps not as many as many people
think.

How can looking at just a few things tell us something about all things
in a population? If we sample 12 people in a city to find out how often they
go to the movies or whether they trust the mayor, can we learn anything
about all the people we didn’t ask? Yes, if we previously knew very little, it
is possible to learn from a sample this small. And if you think about it, that’s
kind of amazing; but whether this small sample tells us much depends in
part on how we took the sample. If we just ask our friends or all the men
in a barbershop, there is good reason to believe that this group might not
be representative of the total population, and it is hard to tell how far off
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our conclusions about the larger population might be. We need a method
to ensure that we don'’t just systematically choose samples of a particular
type.

The solution for this is genuinely random sampling from the entire
population we are trying to examine. If we can pick samples randomly, we
still have error, but the rules of probability can tell us something about the
error. We can work out the chance that we just happened to pick Democrats
in a political poll of an area that, in reality, has more Republicans. As the
number of people randomly sampled grows, the chance of accidentally
getting a nonrepresentative group becomes smaller and smaller.

If you've seen reports of political polls or have read any research that
used some sort of sample, you've seen reference to the concept of statistical
significance. Statistical significance simply tells us whether we are seeing
something real and not just something that happened by chance. How big
a sample do we need to get a “statistically significant” result? Do we have
to survey 1,000 customers? Do we have to spot-check welds on the chassis
of 50 cars? Does a drug have to be tested with more than 100 patients in a
clinical trial?

I've heard many authoritative-sounding proclamations on this topic.
Someone will state that unless there is at least some specific number, the
results won’t be statistically significant. How did the person come up with
this number? At best, the individual will make a vague reference to some
rule from a statistics text. Perhaps the person remembers that the z-stat
table starts at 30 samples (a somewhat arbitrary point where the t-stat for
smaller samples and z-stat roughly converge), but this particular statistics
trivia has nothing to do with a magic threshold of statistical significance.
I've also heard 100, 600, 1,000, and other values as an amount someone has
been told to use as a minimum number of required samples for a survey. In
some cases, these amounts were specifically computed values to solve some
problems. But I find that in all but the rarest cases, no specific calculation
for some minimum sample size is offered. There is such a calculation, but
its actual use is much rarer than the off-handed claims about statistically
significant sample sizes.

In short, the concept of statistical significance is vastly overused by
those who don’t quite understand what it means. Do they mean that unless
this threshold is met for the sample size, we will have #no reduction in uncer-
tainty? Do they mean that the uncertainty reduction we get from a smaller
sample won’t have an economic value of information that exceeds the cost
of the measurement? My experience is that when it comes to conducting
some sort of random sampling in business, a lot of “experts” come out of
the woodwork to state what can and can’t be done in statistics. I have found
that the error rate in their foggy memory of first-semester statistics can be
much, much higher than the error of a small sample.
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Someone who really does know something about statistical significance
is Barry Nussbaum, chief statistician of Statistical Support Services at the
Environmental Protection Agency (EPA). I've worked with him on how to
import some of my methods into statistical analysis at the EPA. He fields
questions from all over the agency on how to conduct statistical analysis on
different types of problems. He tells me: “When people ask for statistics
support, they ask ‘What'’s the sample size? It is the wrong question, but it’s
the first one most people ask.” Of course, Nussbaum needs to find out more
about what they are measuring and why in order to answer that question. I
couldn’t agree more.

As first discussed in Chapter 7, a very small sample can probably tell
you much more than you think. When your current uncertainty is great,
even a small sample can produce a big reduction in uncertainty. If you
already know a quantity is within a very narrow range—say, the percentage
of customers satisfied with their service being within 80% to 85%—then
you would probably need a lot of samples to improve on that (more than
1,000, actually). But this book is more about those things that are considered
immeasurable, and in those cases, the uncertainty is generally much greater.
And it is exactly in those types of problems where even a few observations
can tell us a lot.

When Outliers Matter Most

A caveat should be mentioned when applying the methods discussed so
far. Both the t-statistic and the normal z-statistic are types of “parametric”
statistics. Parametric statistics are those that have to assume a particular un-
derlying distribution. And while often it is safe to assume that a distribution
is normal to start with, it can be far off base. Even though these parametric
statistics don’t rely strictly on the “subjective” estimates of calibrated experts,
they still start with a fairly arbitrary assumption that might be very wrong.

As Exhibit 9.2 shows, there are some populations where the estimate
of the mean converges quickly. But, if we sample the income levels of
individuals, the power of an earthquake, or the size of asteroids in the
asteroid belt, we may find that the 90% CI for the estimate of the mean
never gets narrower. Some samples will temporarily narrow the 90% CI, but
some “outliers” are so much bigger than the rest of the population that, if
they came up in the sample, they would greatly widen the CI again. As we
sample, this periodic widening from extreme outliers may happen just often
enough to keep the estimate of the mean from ever converging.

Exhibit 9.3 shows how some things might converge more slowly than
others and methods that might apply in each situation. This exhibit shows
that the easiest way to determine how quickly estimates converge is to
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EXHIBIT 9.3 Varying Rates of Convergence for the Estimate of the Mean

< Nonparametric —
<—— Parametric ——

One (Useful sample sizes probably smaller
Sample on the left, larger on the right)

Convergence Very quickly Usually quickly Might be Might be non-
converging  converging slowly converging
(Relatively (Any fairly converging (Outliers are
homoge- symmetrical (Outliers are  orders of
neous population, very large magnitude
things) extremes are not compared to  larger than

many times larger  most) most)
than the
average)

Examples e Cholesterol e Percentage of e Cost e Market value of
level of customers who overruns of corporations
your blood  like the new software e Market

e Purity of a product projects fluctuations
public e Failure loads of e Downtime of e Income levels
water bricks a factory due  of individuals
supply e Age of your to an e Casualties of

e Weight of customers accident wars
Jelly beans e How much time e Size of volcanic

staff spend eruptions
commuting

e How many
movies a year
people see

ask: “How big are the exceptions compared to most?” In the case of sam-
ples of water from a tank in a municipal water system, the amount of
contaminants in one sample will be extremely close to the amount in the
next. In those cases, only one sample is required. In the case of how much
time per week your coworkers spend in overhead activities not related to
a particular project, outliers are unlikely to throw off the average. (There
are only so many hours in the week, after all.) In those cases, parametric
methods work well. In the case of earthquakes or revenue of companies, a
single outlier can easily throw off the average.

The types of things covered in this last column of Exhibit 9.3 are some-
times “power law” distributions. As mentioned in Chapter 6, the normal
distribution is not a good fit for some phenomena, such as stock mar-
ket fluctuations. But the power law is a very good fit. As odd as this
might seem, populations that have power law distributions /iterally have
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no definable average. But this kind of distribution still has characteristics
that can be measured in relatively few observations. These methods are
known as “nonparametric.” We will show one solution to the problem of
nonconverging estimates of means shortly.

In cases where outliers are orders of magnitude bigger than the typical
sample, the estimate of the mean may converge slowly or not at all.

The Easiest Sample Statistics Ever

Nonconverging data can be a big problem for someone trying to measure.
Furthermore, with very small samples, it is possible with the t-statistic to
generate a 90% CI that includes an answer we know can’t be right. If we
survey 5 customers about how many hours per week they spend watching
reality TV shows, and their answers are 0, 0, 1, 1, and 4 hours, the lower
bound of the 90% CI will be a negative value—which makes no sense at
all. But there are solutions to both of these problems that have the added
advantage of being far easier to use.

In Chapter 3, I briefly mentioned the Rule of Five. Remember, that rule
states that if you randomly sample 5 of any population, there is a 93.75%
chance that the median of the population is between the largest and smallest
values in the sample. The median of a population is a value where exactly
half of the population is below it and half above it. The t-statistic, however,
estimates the mean of the population—the total of all the values divided by
the size of the population.

But the Rule of Five is only one rule from a set of similar rules for
highly simplified small sample statistics. Like the Rule of Five, if we can
come up with a method where sample values themselves can be used to
directly estimate a 90% CI for the median of the population, we can quickly
estimate a range without any math at all.

If we sample 8 items, the largest and smallest values would make a
range much wider than a 90% CI (actually, about 99.2% CD. But it turns
out that if we take the second largest and smallest values, we get back to
something closer to a 90% Cl—about 93%. If we sample 11, the 90% CI can
be approximated with the third largest and third smallest values.

Exhibit 9.4 shows similar rules for the first 11 sample sizes that can
approximate a 90% CI just by counting in from the largest and smallest
values by the amount shown. For example, if you can sample 18 things, the
sixth largest and sixth smallest values out of the 18 samples approximated
the upper and lower bounds for a 90% CI. T picked a set of sample sizes
that get can get close to a 90% CI with a clear preference for conservatively
wider ranges when an exact 90% CI is not possible. The third column gives
the “Actual Confidence” to show the odds that the median will be between
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EXHIBIT 9.4 Mathless 90% CI for the Median of Population

Lower bound:__th smallest
Upper bound:__th largest

nth Largest and Smallest

Sample Size Sample Value Actual Confidence
5 1st 93.8%
8 2nd 93.0%

11 3rd 93.5%

13 4th 90.8%

16 5th 92.3%

18 6th 90.4%

21 7th 92.2%

23 8th 90.7%

26 9th 92.4%

28 10th 91.3%

30 11th 90.1%

the bounds given by the nth largest/smallest samples. The third column is
there only to show you that the estimate is as close as possible to the true
90% CI without being too narrow. (Therefore, it is a slightly conservative
estimate of the 90% CI.)

I call this the mathless 90% CI since it only requires you to count in
toward the middle a certain number from the largest and smallest values
in the data. There is no computing sample variance, no square roots, and
no t-statistics tables. I computed this table based on some nonparametric
methods and checked it with some Monte Carlo simulations. The derivation
was a little more complicated than we can get into here, but the result
makes estimating a 90% CI from small samples very easy. Try to commit
to memory the first few sample sizes: 5, 8, 11, and 13. From those you
take the first, second, third, and fourth largest and smallest, respectively,
to estimate a 90% CI. Now you can quickly compute a 90% CI even by
casual observations of data in your environment, without having to pull out
a calculator.

The reason this method works as well as it does is because, in short, the
“middle” of the data doesn’t matter very much when computing a 90% CI.
To explain this, we need just a little more exposure to parametric methods.
The parametric methods include a step where we compute something called
“sample variance,” just as we saw with the parametric t-statistic. Remember,
for each sample, we subtract the mean from the sample value and square
the results. Then we add up all the squares to get the sample variance.
When you perform this brief calculation, you find that almost all of the
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variance comes from those samples farthest from the mean. Even for large
sample sizes, the middle third of a sample typically makes up just 2% of the
variance; the other 98% of the variance comes from the upper and lower
thirds of the sample data. When the sample size is smaller than 12, the
variance is mostly just the single largest and single smallest sample—the
two extreme points.

This mathless approach generates a 90% CI just slightly wider than the
t-statistic, but it avoids some of the problems of the t-statistic. In the previ-
ously mentioned survey of time spent watching reality TV shows, recall that
the lower bound was a nonsensical negative 30 minutes. The upper bound
would be computed to be about 3 hours. With the mathless table, the same
set of five data points would be 0 to 4. The interval with the mathless table
is a little wider (since the upper bound increased), but, since both bounds
are actual values from the data set, we know that both are possible values
to the median.

This reality TV—watching time of consumers is probably a highly skewed
population. A skewed population has a lopsided distribution, and the me-
dian and mean can be different values. However, if we assumed that the
population distribution is close to symmetrical, then the mean and the me-
dian are the same. In this case, the mathless table works just as well to
compute a 90% CI for a mean as a 90% CI for a median.

This assumption might be a stretch in some cases, but it’s actually much
less of an assumption than is made in parametric statistics. In parametric
statistics, we have to assume the distribution has certain specific shapes.
In the case of the mathless table, we make 7no assumption at all about the
distribution of the population to estimate the median.

In fact, the mathless table, since it estimates the median, completely
avoids the problem of nonconverging estimates. The population can be dis-
tributed in all sorts of irregular ways, like the power law distribution of stock
market fluctuations, the “camel-back” age distribution in the United States
caused by the Baby Boomers and their children, or a uniform distribution
like the spin of a roulette wheel. The mathless table still works for the me-
dian in these cases. But if the distribution is also symmetrical, regardless
of whether it is uniform, normal, camel-back, or bow-tie shaped, then the
mathless table also works for the mean.

Clearly, the estimators could sometimes greatly reduce uncertainty with
just a few observations, using parametric methods or nonparametric meth-
ods like the mathless table. But even though the subjective estimates have
errors, the parametric methods and the mathless table have one error in
common: They can consider only the values of the samples, and any prior
knowledge is ignored. In other words, many of the things we consider
“common sense” are excluded from these “objective” methods since they
fail to consider information that calibrated estimators intuitively include.
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Suppose that instead of measuring TV watching habits, we were asking
sales managers how much time they spend managing underperforming sales
reps. If we sampled only five sales managers, they might give us their
answers in average hours per week. Let’s say they said 6, 12, 12, 7, and
1 hours per week. The t-statistic would compute a 90% CI of 3.8 to 13.
However, that equation doesn’t know that the answer of “1 hour” comes
from Bob, whom you know has more problem sales staff members than
anyone else and is probably deliberately underestimating.

The calibrated estimator, in contrast, easily handles that sort of addi-
tional information. The calibrated estimator, using simple common sense,
would not have given a negative lower bound if given the same TV-watching
survey information. Using a calibrated estimator might seem like an unreli-
able way to interpret data, since this interpretation depends on the judgment
of an expert, but it is not necessarily much worse and can even avoid certain
pitfalls. In the next chapter, we will see how prior knowledge like this can
be applied with more mathematical precision.

A Biased Sample of Sampling Methods

How would your average executive measure the population of fish in a lake?
I regularly ask this question of a room full of seminar attendees. Usually
someone in the room produces the most extreme answer: drain the lake. The
average executive, like the average accountant or even the average midlevel
information technology (IT) manager, thinks that “measure” is synonymous
with “count.” So when asked to measure the population of fish, they assume
they are being asked for an exact count, not just a reduction in uncertainty.
With that goal in mind, they would drain the lake and, no doubt, would
come up with a very organized procedure where a team picks up each
dead fish, throws it in the back of a dump truck, and clicks it off on a
handheld counter. Perhaps someone else counts the fish again in the truck
and inspects the now-empty lake bed to “audit” the quality of the count.
He or she could then report that there were exactly 22,573 fish in the lake;
therefore, last year’s restocking effort was successful. Of course, they’re all
dead now.

If you told marine biologists to measure the fish in the lake, they would
not confuse a “count” with a “measure.” Instead, the biologists might employ
a method called “catch and recatch.” First, they would catch and tag a sample
of fish—let’s say 1,000—and release them back into the lake. Then, after
the tagged fish had a chance to disperse among the rest of the population,
they would catch another sample of fish. Suppose they caught 1,000 fish
again, and this time 50 of those 1,000 fish were tagged. This means that
about 5% of the fish in the lake are tagged. Since the marine biologists
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know they originally tagged 1,000 fish, they conclude that the lake contains
about 20,000 fish (5% of 20,000 is 1,000).

This type of sampling follows the binomial distribution, but, for large
numbers like these, we can approximate it with the normal distribution.
The error for this estimate can be computed using a slight variation on the
previous error-estimating methods. All we have to do is change how we
compute the sample variance; the rest is the same. The sample variance in
this case is computed as the share within the group we are trying to measure
times the share outside of the group. In other words, we take the share of
tagged fish (.05) times the share of fish not tagged (.95), resulting in .0475.

Now we follow the rest of the previously defined procedure. We divide
the sample variance by the number of samples and take the square root
of the total: SQRT(.0475 / 1000) = .007. To get our 90% CI of the share of
tagged fish in the lake, we take the share we think are tagged (.05) plus or
minus .007 times 1.645 (the 90% CI z-statistic) to get a range of 3.8% to 6.2%
of the fish in the lake are tagged. We know we tagged 1,000, so this must
mean there are a total of 1000/.062 = 16,256 to 1000/.032 = 25,984 fish in
the lake.

To some people, this might seem like a wide range. But suppose our
previous level of uncertainty gave us a calibrated estimate of 2,000 to 50,000.
Furthermore, suppose our objective was simply to determine if the popu-
lation was increasing or dying off, and we originally stocked the lake with
5,000 fish. Anything greater than 6,000 is at least increasing population, and
10,000 or more would be healthy enough that no expensive intervention
would be required. Given the initial range and the relevant threshold, this
new level of uncertainty is definitely a significant improvement and an eas-
ily acceptable error. In fact, we could have sampled just a quarter of what
we did in the initial catch and the recatch (250 fish each time), and we
would still be confident the population had increased to a number greater
than 6,000.

This method is a particularly powerful example of how sampling re-
veals something about the unseen. It has been used for estimating such
things as how many people the U.S. Census missed, how many species of
butterflies are still undiscovered in the Amazon, how many unauthorized
intrusions have been made in an IT system, and how many prospective
customers you have not yet identified. Just because you will never see all
of a group doesn’t mean you can’t measure the size of a group.

Basically, the recatch method is merely two independent sampling
methods where we compare the overlap between the two samples to esti-
mate the size of the population. If you want to estimate the number of flaws
in a building design, use two different groups of quality inspectors. Then
compare how many they each caught and how many flaws were caught
by both teams. The number of flaws each caught is like the number of fish
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caught in each of the two net castings in the previous example (1,000 each
time), and the number of flaws they both found is like the number of tagged
fish in the second net (50).

“Catch-recatch” in its various forms is just one of many varieties of
sampling. No doubt, quite a few more powerful methods are yet to be
invented. Still, knowing a little about a few important sampling methods
gives you enough background to figure out how to assess observations for
a wide variety of problems.

Population Proportion Sampling

The fish population example was one special variation on a very common
measurement problem. Sometimes you want to estimate what proportion of
a population has a particular characteristic. You might want to determine
what percentage of registered voters in Virginia are democrats. You might
want to determine what percentage of customers prefer a new product
feature over the old. In the case of the catch-recatch method for estimating
the population of fish in a lake, we had to determine what percentage of
fish in the lake were tagged. Knowing exactly how many were tagged we
could then use the estimate for the percentage of tagged fish in the lake to
estimate the size of the entire population.

We are trying to estimate the proportion of a population that falls in
some defined set, P (uppercase), using the proportion of a sample that fell
in that set, p (lowercase). For example, if we ask a sample of 100 retail
customers if they have visited the store online, and 34 say yes, then p =
34%. Of course, the real P could be a little different given our sampling error.

The only difference between using a sample to estimate the real popula-
tion proportion, P, and estimating a mean is how we compute the variance.
For a population proportion estimate, the variance is computed as (p X
(1 —p)/n). In the example of customers who visited online, this would be
(.34 x (1—.34)/100), which gives us a variance of .002244. After that, ev-
erything is the same as using a z-stat. We just convert the variance to a
standard deviation (by taking the square root of the variance), multiply it
by our z-stat (or t-stat if the sample is less than 30), and add and subtract
the result from the sample proportion, p, to get a CI. To summarize all of
that in a simple calculation, we write:

For the 90% CI Upper Bound write: =p + 1.645 x (p x (1 — p)/n)".5
For the 90% CI Lower Bound write: =p — 1.645 x (p x (1 — p)/n)".5

This gives us a 90% CI of 26% to 42%. In this case we assumed a
“normal approximation” for a population proportion. That is, under certain
conditions, the distribution we just estimated is just about exactly normally
distributed. The conditions required for this assumption are that p x n > 7
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Sample Size
1 2 3 4 6 8 10 15 20 30
° 0| 2578 | 1.7-63 | 1.3-53 | 01.0-45 | 0.7-35 [0.6-28.3| 0.5-23.9 | 0.3-17.1 |0.2-13.3( 0.2-9.2
ey 1| 22.4-97.5 | 13.5-87 | 9.8-75.2 | 07.6-65.8 | 05.3-52.1 | 4.1-42.9| 3.3-36.5 | 2.3-26.4 [1.7-20.7|1.2-14.4
g 2 36.8-98.3| 25-90.3 | 18.9-81 |12.9-65.9| 9.8-55 [07.9-47.0 |5.3-34.4 (4.0-27.1[2.7-18.9
‘2 3 47-98.7 | 34.3-92.4 | 22.5-78 | 16.9-66 | 13.5-57 | 9.0-42 | 6.8-33 | 4.5-23
. 4 55-99.0 | 34.1-87 |25.1-75| 20-65 | 13-48 |9.9-38 | 6.6-27
% 5 48-94.7 | 34.5-83| 27-73 | 17.8-55 |13.2-44| 8.8-31
:‘6 6 65-99.3 | 45-90 | 35-80 |22.7-61 |16.8-4911.1-35
5 7 57-95.9 | 44-87 | 28-67 | 21-54 | 14-38
-g 8 72-99.5 | 53-92 | 33-72 | 25-58 | 16-42
S 9 64-96.7 | 39-77 | 29-63 | 19-45
= 10 76-99.6 | 45-82 | 33-67 | 21-49

EXHIBIT 9.5 Population Proportion 90% CI for Small Samples

and (1 — p) x n > 7. (This standard varies a bit in different sources. I
chose a common middle ground.) In other words, if our sample of 100
didn’t find 7 or fewer customers who visited the Web site or 93 or more,
then this method works. But if we were trying to estimate a much smaller
population proportion using a smaller sample, we might not get to use this
method. For example, if we sampled only 20 customers and only 4 said
they visited the site, then we need a different approach.

The math gets a little more complex but, fortunately, with small samples
it is not hard to simply work out all the answers for every possible result for
population proportions. The table in Exhibit 9.5 shows the 90% CI for several
small sample sizes. If we sample 20, and only 4 have the characteristic we
are looking for—in this case, customers who have visited the store’s Web
site—then we go to the column for 20 samples and look up the row for 4
“hits.” We find a range of 9.9% to 38% as our 90% confidence interval for
the proportion of customers who have been to the Web site.

To save space, I don’t show all of the ranges for hits beyond 10. But
recall that as long as we have at least 8 hits and 8 hits less than the total
sample size, we can use the normal approximation. Also, if we need to get
the range for, say, 26 hits out of 30, we can invert the table by treating hits
as misses and vice versa. We just get the range for 4 out of 30 hits, 6.6% to
27%, and subtract those values from 100% to get a range of 63% to 93.4%

The ranges in this table disguise some of the information about the
actual shape of the distribution. Many of these distributions will not be very
close to a normal distribution at all. Exhibit 9.6 shows what some of the
distributions from the table above really look like. When the number of
hits is at or near zero or at or near the total sample size, the probability
distribution of the population proportion is highly skewed.
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1 Sample, 0 Hits 2 Samples, 1 Hit

0 02 04 06 08 1 0O 02 04 06 08 1
6 Samples, 1 Hit 4 Samples, 4 Hits

0O 02 04 06 08 1 0O 02 04 06 08 1

EXHIBIT 9.6 Example Distributions for Estimates of Population Proportion from
Small Samples

For now, you can use this table to estimate a CI for small samples. If you
have a sample size that is in between the samples sizes shown, you can in-
terpolate between the columns shown to provide a rough approximation. In
the next chapter, we will discuss more details about how these distributions
were computed by using a very different approach. In that chapter we will
also describe a spreadsheet, available on www.howtomeasureanything.com,
that can be used to compute the exact population proportion distributions
for any sample size.

Spot Sampling

Spot sampling is a variation of population proportion sampling. Spot sam-
pling consists of taking random snapshots of people, processes, or things in-
stead of tracking them constantly throughout a period of time. For example,
if you wanted to see the share of time that employees spend in a given ac-
tivity, you randomly sample people through the day to see what they were
doing at that moment. If you find that in 12 instances out of 100 random
samples, people were on a conference call, you can conclude they spend
about 12% of the time on conference calls (90% CI is 8% to 18%). At a
particular point in time they are either doing this activity or not, and you
are simply asking what share of the time this takes. This example is just big
enough that we can also approximate it with a normal distribution, as we
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did earlier. But if you sampled just 10 employees and found that 2 were
involved in the given activity, then we can use Exhibit 9.5 to come up with
a 7.9% to 47%. As we should always keep in mind, this might seem like a
wide range. But if the prior range based on a calibrated estimate was 5% to
70% and the threshold for some decision was 55%, then we have completed
a valuable measurement.

Clustered Sampling

“Clustered sampling” is defined as taking a random sample of groups, then
conducting a census or a more concentrated sampling within the group. For
example, if you want to see what share of households has satellite dishes or
correctly separates plastics in recycling, it might be cost effective to randomly
choose several city blocks, then conduct a complete census of everything in
a block. (Zigzagging across town to individually selected households would
be time consuming.) In such cases, we can’t really consider the number
of elements in the groups (in this case, households) to be the number of
random samples. Within a block, households may be very similar, so we
can’t really treat the number of households as the size of the “random”
sample. When households are highly uniform within a block, it might be
necessary to treat the effective number of random samples as the number
of blocks, not the number of households.

How Many Cars Burn the Wrong Fuel?

A Government Agency Takes a “Just Do It” Approach to Measure-
ment

In the 1970s, the Environmental Protection Agency knew it had a public
policy problem. After 1975, automobiles were designed with catalytic
converters to use unleaded gasoline. But leaded gasoline was cheaper,
and drivers were inclined to continue using leaded fuel in cars with the
new catalytic converters. The now-familiar narrower nozzle restrictor at
the opening to the gas tank was mandated by the EPA to keep people
from adding leaded gasoline to the new cars. (Leaded gasoline came out
of wider nozzles that wouldn’t fit in the nozzle restrictors.) But a driver
could simply remove the restrictor and use leaded gasoline. Barry Nuss-
baum, chief statistician of Statistical Support Services at the EPA, said:
“We knew people were putting leaded fuel in the new cars because
when DMV [Department of Motor Vehicle] inspections were done, they
looked at the restrictor to see if it was removed.” Using leaded fuel
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in the new cars could cause air pollution to be worse, not better, de-
feating the purpose of the unleaded gasoline program. There was a
moment of consternation at the EPA. How could it possibly measure
how many people were using leaded gasoline in unleaded cars? In the
“Just Do It” spirit of measurement, members of the EPA simply staked
out gas stations. First, they randomly selected gas stations throughout
the county. Then, armed with binoculars, EPA staff observed cars at the
pump, recorded whether they took leaded or unleaded gasoline, and
compared license plate numbers to a DMV list of vehicle types. This
method got the EPA some bad exposure—a cartoonist for the Atlanta
Journal-Constitution showed the EPA as Nazi-like characters arresting
people who used the wrong gas, even though the EPA only observed
and arrested no one. Still, Nussbaum said, “This got us into trouble with
a few police departments.” Of course, the police had to concede that
anyone is free to observe others on and from a public street corner. But
the important thing is that the EPA found an answer: About 8% of cars
that should use only unleaded gas were actually using leaded gas. As
difficult as the problem first sounded, the EPA recognized that if it took
the obvious observation and just started sampling, it could improve on
the relative uncertainty.

Stratified Samples

In “stratified sampling,” different sample methods and/or sizes are used for
different groups within a population. This method may make sense when
you have some groups within a population that vary widely from each
other but are fairly homogeneous inside a group. If you are a fast-food
restaurant and you want to sample the demographic of your customers,
it might make sense to sample drive-through customers differently from
walk-ins. If you run a factory and you need to measure “safety habits,” you
might try observing janitors and supervisors for safety procedure violations
differently from welders. (Don'’t forget the Hawthorne effect. Try using a
blind in this case.)

Serial Sampling

The serial sampling approach is generally not discussed in statistics texts.
Nor would it be here if the title of this book was How to Measure Most
Things. But this approach was a big help in intelligence gathering in World
War II,' and it could be a very powerful sampling method for certain types
of business problems. During World War II, spies for the Allies produced
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reports on enemy production of military equipment, including Germany’s
Mark V tanks. The reports about the Mark V were highly inconsistent, and
Allied Intelligence rarely knew whom to believe. In 1943, statisticians work-
ing for the Allies developed a method for estimating production levels based
on the serial numbers of captured tanks. Serial numbers were sequential and
had a date embedded in them. However, looking at a single serial number
did not tell them exactly where the series started. (It might not have started
at 001.) Common sense tells us that the minimum tank production must be
at least the difference between the highest and lowest serial numbers of
captured tanks for a given month. But can we infer even more?

By treating captured tanks as a random sample of the entire population
of tanks, the statisticians saw that they could compute the odds of various
levels of production. Working backward, it would seem unlikely, for exam-
ple, to capture by chance alone 10 tanks produced in the same month with
serial numbers all within 50 increments of each other, if 1,000 tanks were
produced that month. It is more likely that randomly selecting from 1,000
tanks would give us a more dispersed series of serial numbers than that. If,
however, only 80 tanks were produced that month, then getting a sample
of 10 tanks with that narrow range of serial numbers seems at least feasible.

Exhibit 9.7 shows how the Mark V tank production estimates from
Allied Intelligence and from the statistical method compared to the actual
number confirmed by postwar analysis of captured documents. Clearly, the
statistical method based on the analysis of serial numbers of captured tanks
is the hands-down winner in this comparison.

Furthermore, an estimate with an error still considerably less than the
original intelligence estimates probably could have been done with sur-
prisingly few captured tanks. Exhibit 9.8 shows how a random sample of
serial-numbered items can be used to infer the size of the entire popula-
tion. Following the directions on the exhibit, consider the example of just
eight “captured” items. (This could be a competitor’s products, pages of a

EXHIBIT 9.7 Comparison of W